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Abstract

The upper and lower Nordhaus-Gaddum bounds over all graphs for the power
domination number follow from known bounds on the domination number and ex-
amples. In this note we improve the upper sum bound for the power domination
number substantially for graphs having the property that both the graph and its
complement must be connected. For these graphs, our bound is tight and is also
significantly better than the corresponding bound for domination number. We also
improve the product upper bound for the power domination number for graphs with
certain properties.
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1 Introduction

The study of the power domination number of a graph arose from the question of how
to monitor electric power networks at minimum cost, see Haynes et al. [9]. Intuitively,
the power domination problem consists of finding a set of vertices in a graph that can
observe the entire graph according to certain observation rules. The formal definition is
given below immediately after some graph theory terminology.

A graph G = (V,E) is an ordered pair formed by a finite nonempty set of vertices
V = V (G) and a set of edges E = E(G) containing unordered pairs of distinct vertices
(that is, all graphs are simple and undirected). The complement of G = (V,E) is the
graph G = (V,E), where E consists of all two element subsets of V that are not in E. For
any vertex v ∈ V , the neighborhood of v is the set N(v) = {u ∈ V : {u, v} ∈ E} and the
closed neighborhood of v is the set N [v] = N(v)∪{v}. Similarly, for any set of vertices S,
N(S) = ∪v∈SN(v) and N [S] = ∪v∈SN [v].

For a set S of vertices in a graph G, define PD(S) ⊆ V (G) recursively as follows:

1. PD(S) := N [S] = S ∪N(S).

2. While there exists v ∈ PD(S) such that |N(v) \ PD(S)| = 1: PD(S) := PD(S) ∪
N(v).

A set S ⊆ V (G) is called a power dominating set of a graph G if, at the end of the process
above, PD(S) = V (G). A minimum power dominating set is a power dominating set
of minimum cardinality. The power domination number of G, denoted by γP (G), is the
cardinality of a minimum power dominating set.

Power domination is naturally related to domination and to zero forcing. A set S ⊆
V (G) is called a dominating set of a graph G if N [S] = V (G). A minimum dominating
set is a dominating set of minimum cardinality. The domination number of G, denoted
by γ(G), is the cardinality of a minimum dominating set. Clearly γP (G) 6 γ(G).

Zero forcing was introduced independently in combinatorial matrix theory [1] and
control of quantum systems [5]. From a graph theory point of view, zero forcing is a
coloring game on a graph played according to the color change rule: If u is a blue vertex
and exactly one neighbor w of u is white, then change the color of w to blue. We say u
forces w. A zero forcing set for G is a subset of vertices B such that when the vertices
in B are colored blue and the remaining vertices are colored white initially, repeated
application of the color change rule can color all vertices of G blue. A minimum zero
forcing set is a zero forcing set of minimum cardinality. The zero forcing number of G,
denoted by Z(G), is the cardinality of a minimum zero forcing set. Power domination
can be seen as a domination step followed by a zero forcing process, and we will use the
terminology “v forces w” to refer to Step 2 of power domination. Clearly γP (G) 6 Z(G).

For a graph parameter ζ, the following are Nordhaus-Gaddum problems:

• Determine a (tight) lower or upper bound on ζ(G) + ζ(G).

• Determine a (tight) lower or upper bound on ζ(G) · ζ(G).
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The name comes from the next theorem of Nordhaus and Gaddum, where χ(G) denotes
the chromatic number of G.

Theorem 1. [16] For any graph G of order n,

2
√
n 6 χ(G) + χ(G) 6 n+ 1

and

n 6 χ(G) · χ(G) 6

(
n+ 1

2

)2

.

Each bound is assumed for infinitely many values of n.

Nordhaus-Gaddum bounds have been found for both domination and zero forcing. In
addition to the original papers cited here, Nordhaus-Gaddum results for domination and
several variants (but not power domination) are discussed in Section 9.1 of the book [10]
and in the survey paper [2].

Theorem 2. [13] For any graph G of order n > 2,

3 6 γ(G) + γ(G) 6 n+ 1 and 2 6 γ(G) · γ(G) 6 n.

The upper bounds are realized by the complete graph Kn, and the lower bounds are realized
by the star (complete bipartite graph) K1,n−1.

It is known that for a graph G of order n > 2,

n− 2 6 Z(G) + Z(G) 6 2n− 1

and
n− 3 6 Z(G) · Z(G) 6 n2 − n,

with the upper bounds realized by the complete graph Kn and the lower bounds realized
by the path Pn for n > 4. That the upper bounds are correct is immediate. The result
n− 2 6 Z(G) + Z(G) appears in [7]. Then n− 3 6 Z(G) ·Z(G) follows, because 1 6 Z(G)
for all G and the function f(z) = z(n−2−z) attains its minimum on the interval [1, n−3]
at the endpoints.

The general Nordhaus-Gaddum upper bounds for power domination number follow
from those for domination number given in Theorem 2. The inequalities 2 6 γP (G) +
γP (G) and 1 6 γP (G) · γP (G) are obvious since 1 6 γP (G) for every graph, and these are
realized by the path Pn (it is straightforward to verify that γP (Pn) = 1 = γP (Pn)).

Corollary 3. For any graph G of order n,

2 6 γP (G) + γP (G) 6 n+ 1 and 1 6 γP (G) · γP (G) 6 n.

The upper bounds are realized by the complete graph Kn, and the lower bounds are realized
by the path Pn.
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In Section 3 we improve the sum upper bound for the power domination number
significantly under the assumption that both G and G are connected, or more generally
all components of both have order at least 3, and show that this bound is substantially
different from the analogous bound for domination number. In Section 4 we refine the
product bounds for certain special cases. Section 2 contains additional results that we
use in Sections 3 and 4. Section 5 summarizes the bounds for domination number, power
domination number, and zero forcing number.

Some additional notation is used: Let Kp,q denote a complete bipartite graph with
partite sets of cardinality p and q. The degree of vertex v is degG v = |NG(v)|. Let δ(G)
(respectively, ∆(G)) denote the minimum (respectively, maximum) of the degrees of the
vertices of G. A cut-set is a set of vertices whose removal disconnects G. The vertex-
connectivity of G 6= Kn, denoted by κ(G), is the minimum cardinality of a cut-set (note
κ(G) = 0 if G is disconnected), and κ(Kn) = n − 1. An edge-cut is a set of edges whose
removal disconnects G, and the edge-connectivity of G, denoted by λ(G), is the minimum
cardinality of an edge-cut. Observe that κ(G) 6 λ(G) 6 δ(G). The distance between
vertices u and v in G, dG(u, v), is the length of a shortest path between u and v in G. The
diameter of G, diam(G), is the maximum distance between two vertices in a connected
graph G; diam(G) = ∞ if G is not connected. A component of a graph is a maximal
connected subgraph.

2 Tools for Nordhaus-Gaddum bounds for power domination

In this section we establish results that will be applied to improve Nordhaus-Gaddum
upper bounds for both the sum and product of the power domination number with addi-
tional assumptions, such as every component of the graph and its complement has order
at least 3. The next result is immediate from Corollary 3.

Corollary 4. For any graph G of order n, γP (G) 6
⌊

n
γP (G)

⌋
.

Next we consider the relationship between the power domination number of G or G
and the minimum degree or vertex-connectivity of G.

Remark 5. For any graph G of order n, γ(G) 6 δ(G) + 1, because a vertex of maximum
degree in G, which is n − 1 − δ(G), together with all its non-neighbors is a dominating
set of G.

Proposition 6. Let G be a graph such that neither G nor G has isolated vertices. Then
γP (G) 6 δ(G). If δ(G) = 1, then γP (G) = 1.

Proof. Construct a power dominating set S for G of cardinality δ(G) as follows: Put a
vertex v of maximum degree in G into S, so |NG[v]| = ∆(G) + 1 = n − 1 − δ(G) + 1 =
n − δ(G) < n, where n is the order of G. Then add all but one of the vertices in
V (G) \ NG[v] into S, i.e., add δ(G) − 1 > 0 vertices to S, so |S| = δ(G). Now NG[S]
contains all but at most one vertex, and since G has no isolated vertices, any neighbor of
such a vertex can force it. The last statement then follows since γP (G) > 1 for all graphs
G.
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Theorem 7. [11] If G is a graph with diam(G) = 2, then γ(G) 6 κ(G).

Next we state several results that give sufficient conditions for γ(G) 6 2 or γ(G) 6 2,
which then imply γP (G) 6 2 or γP (G) 6 2.

Theorem 8. [4], [10, Theorem 2.25] If G is a graph with diam(G) > 3, then γ(G) 6 2.

Note that Theorem 8 also applies to graphs that are not connected.

Theorem 9. Suppose G is a graph with diam(G) = 2 such that G has no isolated vertices.
Then γP (G) 6 κ(G)− 1 or γP (G) 6 2.

Proof. Since G has no isolated vertices, every vertex has a neighbor in G. Let S be a
minimum cut-set for G. Since diam(G) = 2, every vertex in V \ S is adjacent to at least
one vertex in S.

Case 1: There exists a vertex u ∈ V \ S that is adjacent to exactly one vertex in S,
say v (Case 1 is the only possible case when κ(G) = 1). Let G1 denote the component of
G− S containing u. In G, u dominates S \ {v} and all vertices in components of G− S
other than G1. Let x be any vertex in a component of G − S that is not equal to G1.
Then x dominates the vertices of G1. Therefore, {u, x} dominates all vertices in V except
possibly v, and any neighbor of v in G can force v, so {u, x} is a power dominating set
for G. Thus, γP (G) 6 2.

Case 2: Every vertex in V \ S is adjacent to at least two vertices in S. Then S \ {v}
is a power dominating set for any vertex v ∈ S, because S \ {v} dominates V \ {v}, and
any neighbor of v in G can force v. Thus, γP (G) 6 κ(G)− 1.

Theorem 10. [8] If G is planar and diam(G) = 2, then γ(G) 6 2 or G = S4(K3), the
graph shown in Figure 1. Furthermore, γ(S4(K3)) = 3.

Figure 1: The graph S4(K3), which is the only planar graph with diameter 2 and domi-
nation number greater than 2.

Corollary 11. If G is planar and diam(G) = 2, then γP (G) 6 2.

Proof. This follows from Theorem 10 and the fact that γP (S4(K3)) = 2.
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When κ(G) = λ(G) = δ(G), G is maximally connected. In every maximally connected
graph G, for any vertex v such that deg v = δ(G), NG(v) is a minimum cut-set and the set
of all edges incident with v is a minimum edge-cut. In this case we say the cut is trivial,
because it leaves a connected component formed by one isolated vertex. A maximally
connected graph G is super-λ if every minimum edge-cut is trivial. Super-λ graphs of
diameter 2 were characterized by Wang and Li:

Theorem 12. [19] A connected graph G with diam(G) = 2 is super-λ if and only if G
contains no subgraph Kδ(G) in which all of the vertices have degree (in G) equal to δ(G).

Proposition 13. Let G be a connected graph with diam(G) = 2. If G is not super-λ,
then γP (G) 6 2.

Proof. Since G is not super-λ, there exists a subgraph Kδ(G) in which all of the vertices
have degree equal to δ(G) in G. Let v be a vertex in this Kδ(G), so v has exactly one
neighbor outside Kδ(G), say w. Then, v dominates all vertices in Kδ(G) and w. Since every
vertex u in Kδ(G) has degree in G equal to δ(G) and u has δ(G)−1 dominated neighbors, u
can force its one remaining neighbor. Therefore, all vertices in Kδ(G) and their neighbors
are observed. Since diam(G) = 2, d(v, x) = 1 or d(v, x) = 2 for every vertex x 6= v in G.
If d(v, x) = 1, then x is dominated by v. If d(v, x) = 2, then x is a neighbor of a vertex
in NG(v). Since the vertices in NG(v) that are in Kδ(G) have forced their neighbors, the
only case in which x is not observed is if it is a neighbor of w. Thus {v, w} is a power
dominating set.

Corollary 14. Assume that G and G both have all components of order at least 3. Then
γP (G) 6 2 or γP (G) 6 2 if any of the conditions below is satisfied:

1. diam(G) > 3 or diam(G) > 3.

2. G or G is planar.

3. κ(G) 6 3 or κ(G) 6 3.

4. G or G is not super-λ.

Proof. Part (1) follows from Theorem 8. Since G and G both have all components of
order at least 3, diam(G) 6= 1 and diam(G) 6= 1. The case diam(G) > 3 is covered by part
(1). So assume diam(G) = 2. Then (2), (3), and (4) follow from Corollary 11, Theorem
9, and Proposition 13, respectively.

Let T be the family of graphs constructed by starting with a connected graph H and
for each v ∈ V (H) adding two new vertices v′ and v′′, each adjacent to v and possibly
to each other but not to any other vertices. The next result appears in [21] without the
floor function.

Theorem 15. [21] Suppose every component of a graph G has order at least 3 and n
denotes the order of G. Then γP (G) 6

⌊
n
3

⌋
. Furthermore, if γP (G) = n

3
, then every

component of G is in T ∪ {K3,3}.
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The method used in the construction of a graph G ∈ T implies that γP (G) = 1 if we
start with a graph on at least 2 vertices:

Lemma 16. Suppose G is a graph having distinct vertices w, u, v, v′, and v′′ such that
N [v′] = N [v′′] = {v, v′, v′′}, u ∈ N(v) and w 6∈ N(v). Then γP (G) = 1.

Proof. In G, u is not adjacent to v but is adjacent to v′ and to v′′. Then {v′} is a power
dominating set for G, because u ∈ NG[v′] = V (G)\{v, v′′} and u forces v′′ in G, and then
w forces v in G. Thus γp(G) = 1.

Proposition 17. Suppose G is a graph of order n such that every component of G and G
has order at least 3 and γP (G) = n

3
. Then γP (G) 6 2. If, in addition, G has a component

Go ∈ T of order at least 6, then γP (G) = 1.

Proof. Necessarily, n is a multiple of 3 and n 6= 3. If G has 2 or more components, then
γ(G) 6 2 by Theorem 8. If G = K3,3, then γP (G) = 2. Now suppose G has a component
Go ∈ T of order at least 6 (this includes the case where G has only one component that
is not K3,3). Then γP (Go) = 1 by Lemma 16 and Proposition 6 (for the case v′′ 6∈ N(v′)).
In G, any vertex in Go dominates any vertex in a different component, so the one vertex
that power dominates Go also power dominates G, and γP (G) = 1.

Theorem 18. [11, 14] Suppose G is a graph of order n with diam(G) = 2. If n > 24,
then γ(G) 6

⌊
n
4

⌋
, and γ(G) 6

⌊
n
4

⌋
+ 1 for n 6 23.

Remark 19. Let G be a graph. Suppose W is a set of at least two vertices such that no
vertex outside W is adjacent to exactly one vertex in W . Then every power dominating
set S must contain a vertex in N [W ], because no vertex outside of W can force a vertex
in W unless all but one of the vertices in W have already been power dominated.

Figure 2: The necklace N3

The necklace with s diamonds, denotedNs, is a 3-regular graph that can be constructed
from a 3s-cycle by appending s additional vertices, with each new vertex adjacent to 3
sequential cycle vertices; N3 is shown in Figure 2.

Theorem 20. [6] Suppose G is a connected 3-regular graph of order n and G 6= K3,3.
Then γP (G) 6

⌊
n
4

⌋
, and this bound is attained for arbitrarily large n by G = Nr.
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Lemma 21. For r > 2, γP (Nr) = 2.

Proof. Any two vertices that are in different copies of K4 − e and are not incident to
the missing edges dominate Nr, so γP (Nr) 6 2. To complete the proof, we show that no
one vertex v can power dominate Nr. Denote the vertices of the K4 − e that contains
v by x, y, z, w, where e = {x, y}. Apply Remark 19 to W = {z, w} for v = x and to
W = {x, y, w} for v = z to conclude {v} is not a power dominating set; the cases v = y
or w are similar.

3 Nordhaus-Gaddum sum bounds for power domination

In this section, we improve the tight Nordhaus-Gaddum sum upper bound of n for all
graphs (Corollary 3) to approximately n

3
under one of the assumptions that each com-

ponent of G and G has order at least 3 (Theorem 23 below), or that both G and G are
connected (Theorem 25 below), and to approximately n

4
in some special cases. The lower

bound 2 6 γP (G) + γP (G) can be attained with both G and G connected, specifically by
the path G = Pn (both Pn and Pn are connected for n > 4). But the upper bound for all
graphs is attainable only by disconnecting G or G with some very small components.

The next result follows from Corollary 14 and Theorem 15.

Corollary 22. Let G be a graph of order n such that every component of G and G has
order at least 3 and (diam(G) > 3 or diam(G) > 3 or κ(G) 6 3 or κ(G) 6 3). Then
γP (G) + γP (G) 6

⌊
n
3

⌋
+ 2.

Theorem 23. Suppose G is a graph of order n such that every component of G and G
has order at least 3. Then for n 6= 13, 14, 16, 17, 20,

γP (G) + γP (G) 6
⌊n

3

⌋
+ 2,

and this bound is attained for arbitrarily large n by G = rK3 (where r > 2).
For n = 13, 14, 16, 17, 20, γP (G) + γP (G) 6

⌊
n
3

⌋
+ 3.

Proof. Without loss of generality, we assume γP (G) 6 γP (G), and let p = γP (G) and
p̄ = γP (G). If p 6 2, then p + p̄ 6

⌊
n
3

⌋
+ 2 follows from Theorem 15. If p > 6, Corollary

4 gives p + p̄ 6 n
p̄

+ n
p
6 n

3
. So we assume 3 6 p 6 5. Since diam(G), diam(G) 6= 1, by

Corollary 22 we may also assume diam(G) = diam(G) = 2 and κ(G), κ(G) > 4. The

latter implies n > 9. Corollary 4 implies p+ p̄ 6 p+
⌊
n
p

⌋
. By Theorem 18, p, p̄ 6

⌊
n
4

⌋
+ 1.

Thus we need to consider the following cases:

• p = 3, 4, in which case p+ p̄ 6
⌊
n
4

⌋
+ 4.

• p = 5, in which case p+ p̄ 6
⌊
n
5

⌋
+ 5.
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Algebra shows that
⌊
n
4

⌋
+ 4 6

⌊
n
3

⌋
+ 2 and

⌊
n
5

⌋
+ 5 6

⌊
n
3

⌋
+ 2 for n > 21 and n = 18, 19.

For n = 9, 10, 11, p+ p̄ 6 5 =
⌊
n
3

⌋
+ 2 has been verified computationally [12].

To complete the proof that p + p̄ 6 n
3

+ 2 for n 6= 13, 14, 16, 17, 20, we consider
n = 12, 15. Since p 6 p̄ 6 n

p
, the only possibilities are n = 12 with (p, p̄) = (3, 3), (3, 4),

or n = 15 with (p, p̄) = (3, 3), (3, 4), (3, 5). For n = 12 with (p, p̄) = (3, 3), and n = 15
with (p, p̄) = (3, 3), (3, 4), γP (G) + γP (G) 6 n

3
+ 2. In each of the remaining cases, n = 12

with (p, p̄) = (3, 4), or n = 15 with (p, p̄) = (3, 5), observe that p̄ = n
3

and p = 3. But this
is prohibited by Proposition 17.

If G is a disjoint union of r > 2 copies of K3, then γP (G) + γP (G) = n
3

+ 2, so the
bound is tight for arbitrarily large n.

Finally, consider n = 13, 14, 16, 17, 20. For p = 3, γP (G) + γP (G) 6
⌊
n
3

⌋
+ 3 is

immediate from Theorem 15. Since p 6 p̄ 6 n
p
, the only remaining cases are n = 16

or 17 with (p, p̄) = (4, 4), and n = 20 with (p, p̄) = (4, 4), (4, 5). All of these satisfy
γP (G) + γP (G) 6

⌊
n
3

⌋
+ 3.

We have no examples contradicting γP (G) + γP (G) 6
⌊
n
3

⌋
+ 2 for graphs G of any

order n where the order of each component of G and G is at least 3. We conjecture that
these “exceptional values” 13, 14, 16, 17, 20 of n are not in fact exceptions:

Conjecture 24. If G is graph of order n such that the order of each component of G and
G is at least 3, then γP (G) + γP (G) 6

⌊
n
3

⌋
+ 2.

Next we consider the case in which both G and G are required to be connected.

Theorem 25. Suppose G is a graph of order n such that both G and G are connected.
Then for n 6= 12, 13, 14, 15, 16, 17, 18, 20, 21, 24,

γP (G) + γP (G) 6
⌈n

3

⌉
+ 1,

and this bound is attained for arbitrarily large n > 6 by G ∈ T .

Proof. For n not a multiple of 3,
⌈
n
3

⌉
+ 1 =

⌊
n
3

⌋
+ 2, and the result follows from Theorem

23. So assume n is a multiple of 3. We proceed as in the proof of Theorem 23, with the
same notational conventions p := γP (G) 6 p̄ := γP (G), and again the bound is established
for p > 6 by Corollary 4. The result follows from Theorem 15 for p = 1, so we assume
2 6 p 6 5. Because n is a multiple of 3 and both G and G are connected, n > 6. Since
K3,3 is not connected, Theorem 15 and Proposition 17 prohibit p > 2 and p̄ = n

3
, so

p̄ 6 n
3
− 1. Thus the result follows for p = 2.

So we assume 3 6 p 6 5 and 3 6 p 6 p̄ 6 n
3
− 1; the latter requires n > 12, and

since all multiples of 3 between 12 and 26 are excluded by hypothesis, we may assume
n > 27. Since 3 6 p, diam(G) 6 2 by Theorem 8. Since diam(G) = 1 would imply
p̄ = 1, necessarily diam(G) = 2. Then p̄ 6

⌊
n
4

⌋
by Theorem 18. Hence p + p̄ 6

⌊
n
4

⌋
+ 4

for p = 3, 4, and p + p̄ 6
⌊
n
5

⌋
+ 5 for p = 5. Algebra shows that

⌊
n
4

⌋
+ 4 6 n

3
+ 1 and⌊

n
5

⌋
+ 5 6 n

3
+ 1 for n > 27 and n a multiple of 3.

There are graphs G ∈ T of arbitrarily large order n, G is connected for n > 6, and
these graphs attain the bound.
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The tight upper bound in Theorem 25 for γP (G)+γP (G) with both G and G connected
was obtained by switching from floor to ceiling. This raises a question about the bound
with floor, which has implications for products (see Section 4).

Question 26. Do there exist graphs G of arbitrarily large order n with both G and G
connected such that γP (G) + γP (G) =

⌊
n
3

⌋
+ 2?

The next two examples, found via the computer program Sage, show that there are
pairs of connected graphs G and G of orders n = 8 and 11 such that γP (G) + γP (G) =⌊
n
3

⌋
+ 2.

Example 27. Let G be the graph shown with its complement in Figure 3; observe that
both are connected. It is easy to see that no one vertex power dominates either G or G
and also easy to find a power dominating set of two vertices for each. Thus

γP (G) + γP (G) = 2 + 2 = 4 =

⌊
8

3

⌋
+ 2.

Figure 3: A connected graph G of order 8 and its connected complement G such that
γP (G) + γP (G) =

⌊
n
3

⌋
+ 2.

Example 28. Let G be the graph shown in Figure 4. It is easy to see that G is also
connected.

First we show that no set of two vertices is a power dominating set for G. Since
{1, 2, 7} is a power dominating set for G, this will imply γP (G) = 3 =

⌊
11
3

⌋
. By Remark

19 applied to the sets W1 = {2, 3} and W2 = {7, 8}, any power dominating set S of G must
contain vertices u1 ∈ {2, 3, 4, 5, 6} and analogously, u2 ∈ {7, 8, 9, 10, 11}. If u1 ∈ {2, 3}
and u2 ∈ {7, 8}, then vertex 1 cannot be forced. If u1 ∈ {4, 5, 6}, then the two remaining
vertices in {4, 5, 6} cannot be forced; the case in which u2 ∈ {9, 10, 11} is symmetric.

Next we show that no one vertex is a power dominating set for G. Since {2, 7} is a
power dominating set for G, this will imply γP (G) = 2 and γP (G) + γP (G) =

⌊
11
3

⌋
+ 2.

For each possible vertex v ∈ {1, 2, 3, 4, 5, 6}, we apply Remark 19 with W as shown:
For v ∈ {1, 2, 3}, use W = {4, 5, 6}. For v ∈ {4, 5, 6}, use W = {2, 3}. The case
v ∈ {7, 8, 9, 10, 11} is symmetric.

The next two theorems for domination number provide an interesting comparison.

Theorem 29. [3] For any graph G of order n such that δ(G) > 1 and δ(G) > 1,

γ(G) + γ(G) 6
⌊n

2

⌋
+ 2,

and this bound is attained for arbitrarily large n.
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Figure 4: A connected graph G of order 11 such that G is also connected and γP (G) +
γP (G) =

⌊
n
3

⌋
+ 2.

Theorem 30. [11] Suppose G is a graph of order n such that δ(G) > 7 and δ(G) > 7.
Then

γ(G) + γ(G) 6
⌊n

3

⌋
+ 2.

From Theorem 30 we see that the same sum upper bound we obtained for power
domination number (with the weaker hypothesis that every component has order at least
3) is obtained for domination number when we make the stronger assumption that the
minimum degrees of both G and G are at least 7. Theorem 29 is a more direct parallel
to Theorem 23 but with a higher bound. Theorem 29 has a weaker hypothesis, which
is equivalent to “every component of G and G has order at least 2.” The next example
shows that if Theorem 29 is restated to require both G and G to be connected, the bound
remains tight. This provides a direct comparison with Theorem 25 and shows that for
graphs G with both G and G connected, the upper bound for the domination sum is
substantially higher than the upper bound for the power domination sum.

Example 31. Let Gk denote the kth comb, constructed by adding a leaf to every vertex
of a path Pk (G9 is shown in Figure 5); the order of Gk is 2k. Then every dominating set
S must have at least k elements, because for each of the k leaves, either the leaf or its
neighbor must be in S. Since two vertices are needed to dominate Gk, γ(Gk) + γ(Gk) =
k+ 2 = 2k

2
+ 2. The results for power domination are very different. For k = 3s, one third

of the vertices in Pk can power dominate Gk, and one vertex can power dominate Gk, so
γP (Gk) + γP (Gk) = s+ 1 = 2k

6
+ 1.

Figure 5: The comb G9 with the vertices of a minimum power dominating set colored.

We can also improve the bound in Corollary 3 when G has some components of order
less than 3 and G has at least one edge.
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Theorem 32. Let G be a graph of order n that has n1 isolated vertices and n2 copies of
K2 as components such that n1 and n2 are not both zero. Then

γP (G) + γP (G) 6 1 +
n

3
+

2n1

3
+
n2

3
.

Proof. As a consequence of Theorem 15,

γP (G) 6 n1 + n2 +

(
n− n1 − 2n2

3

)
.

Because n1 > 1 or n2 > 1, an isolated vertex (respectively, one of the vertices in a K2

component) power dominates the complement, so γP (G) = 1. Hence,

γP (G) + γP (G) 6 n1 + n2 +

(
n− n1 − 2n2

3

)
+ 1.

We can also improve the upper bound in some special cases.

Theorem 33. Suppose G is a graph of order n with diam(G) = diam(G) = 2, and one
of the following is true:

1. G or G is planar.

2. κ(G) 6 3 or κ(G) 6 3.

3. G or G is not super-λ.

If n > 24, then γP (G) + γP (G) 6
⌊
n
4

⌋
+ 2, and γP (G) + γP (G) 6

⌊
n
4

⌋
+ 3 for n 6 23.

Proof. By Corollary 14, γP (G) 6 2 or γP (G) 6 2. Assume without loss of generality that
γP (G) 6 2. Applying Theorem 18 to G, γP (G) 6

⌊
n
4

⌋
for n > 24 and γP (G) 6

⌊
n
4

⌋
+ 1

for n 6 23.

Theorem 34. Suppose G is a 3-regular graph of order n > 6 such that no component
is K3,3. Then γP (G) 6

⌊
n
4

⌋
, γP (G) 6 2, and γP (G) + γP (G) 6

⌊
n
4

⌋
+ 2, and all these

inequalities are tight for arbitrarily large n.

Proof. Suppose first that G is connected. Then γP (G) 6
⌊
n
4

⌋
by Theorem 20 (since G 6=

K3,3), so it suffices to show γP (G) 6 2. Since G 6= K4 and G is 3-regular, diam(G) > 2.
Since diam(G) > 3 implies γP (G) 6 2 by Theorem 8, we assume diam(G) = 2. For any
vertex v, there are at most 10 vertices at distance 0, 1, or 2 from v (v, its 3 neighbors,
and two additional neighbors of each of the neighbors of v), so n 6 10. An examination
of 3-regular graphs with 6 6 n 6 10 (see, for example, [18, p. 127]) shows the only such
graphs of diameter 2 are the five graphs shown in Figure 6 (named as in [18]): C3 = K3,3,
C2, C5, C7, and C27 (the Petersen graph). It is straightforward to verify that γP (G) = 1
for G ∈ {C2, C7} and γP (G) = 2 for G ∈ {C5, C27}. This completes the proof for the
case in which G is connected.
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Figure 6: The five cubic graphs of diameter 2: C3 = K3,3, C2, C5, C7, and C27 = the
Petersen graph.

Now assume G has components G1, . . . , Gs with s > 2. Then γP (G) 6 2 by Theorem
8. Since Gi 6= K3,3,

γP (G) =
s∑
i=1

γP (Gi) 6
s∑
i=1

⌊ni
4

⌋
6

⌊∑s
i=1 ni
4

⌋
=
⌊n

4

⌋
.

The graphs Nr attain the bound by Theorem 20 and Lemma 21.

4 Nordhaus-Gaddum product bounds for power domination

As with the sum, the tight product lower bound for the power domination number for
all graphs G remains unchanged even with the additional requirement that both G and
G be connected (using the path). In Section 3, we achieved a tight sum upper bound
for such graphs. However, since this was achieved with γP (G) = 1 for both G and G
connected, and with γP (G) = 2 when each component of both G and G has order at least
3, there are few immediate implications for products (see Section 5 for further discussion
of connections between sum and product bounds).

Question 35. Does there exist a graph G of order n such that all components of G and
G have order at least 3 and γP (G) · γP (G) > 2

⌊
n
3

⌋
?

Remark 36. If the answer to Question 35 is negative, then the graphs G = rK3 with r > 2
show 2

⌊
n
3

⌋
is a tight upper bound for the product, because γP (G) = n

3
and γP (G) = 2.

Remark 37. If the answer to Question 26 is positive, then such graphs show 2
⌊
n
3

⌋
can be

attained for arbitrarily large n for the product with both G and G connected.

We can improve the product bound in certain special cases. The next result follows
from Corollary 14 and Theorem 15.

Corollary 38. Let G be a graph of order n such that every component of G and G has
order at least 3. Then γP (G) · γP (G) 6 2

⌊
n
3

⌋
if at least one of the following is true:

1. diam(G) > 3 or diam(G) > 3.

2. G or G is planar.

3. κ(G) 6 3 or κ(G) 6 3.
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4. G or G is not super-λ.

The next two results are product analogs of Theorems 32 and 33. The proofs, which
are analogous, are omitted.

Theorem 39. Let G be a graph of order n that has n1 isolated vertices and n2 copies of
K2 as components such that n1 and n2 are not both zero. Then

γP (G) · γP (G) 6
n

3
+

2n1

3
+
n2

3
.

Theorem 40. Suppose G is a graph of order n with diam(G) = diam(G) = 2, and one
of the following is true:

1. G or G is planar.

2. κ(G) 6 3 or κ(G) 6 3.

3. G or G is not super-λ.

If n > 24, then γP (G) · γP (G) 6 2
⌊
n
4

⌋
, and γP (G) · γP (G) 6 2

⌊
n
4

⌋
+ 2 for n 6 23.

The next result follows immediately from Theorem 34.

Corollary 41. Suppose G is a 3-regular graph of order n > 6 with no K3,3 component.
Then γP (G) · γP (G) 6 2

⌊
n
4

⌋
, and this bound is attained for arbitrarily large n.

Proposition 42. Let G be a tree on n > 4 vertices. If G is not K1,3 or K1,4, then

γP (G) · γP (G) 6
⌊n

3

⌋
and this bound is attained for arbitrarily large n.

Proof. Note first that since G is connected, γP (G) 6
⌊
n
3

⌋
by Theorem 15. If a tree is not

a star, then its complement is also connected, and by Proposition 6, γP (G) = 1. For a
star graph K1,n−1, we have γP (K1,n−1) · γP (K1,n−1) = 2, which is less than or equal to n

3

when n > 6. The bound is attained for arbitrarily large n because if G is constructed
from any tree T by adding two leaves to each vertex of T , then γP (G) = n

3
.

5 Summary and discussion

Table 1 summarizes what is known about Nordhaus-Gaddum sum bounds for power dom-
ination number, domination number, and zero forcing number.

Both the sum and product upper and lower bounds for the domination number were
determined by Jaeger and Payan in 1972 (see Theorem 2), and analogous bounds for
power domination are immediate corollaries. Since then, there have been numerous im-
provements to the sum upper bound for domination number under various conditions on
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Table 1: Summary of tight bounds for ζ(G) + ζ(G) for ζ = γP , γ,Z

ζ & restrictions lower upper

γP 2 n+ 1

γP & all components of both G and G of order > 3 & n > 21 2
⌊
n
3

⌋
+ 2

γP & both G and G connected & n > 25 2
⌈
n
3

⌉
+ 1

γ & n > 2 3 n+ 1

γ & both G and G connected 3
⌊
n
2

⌋
+ 2

Z & n > 2 n− 2 2n− 1

Z & both connected n− 2 2n− o(n)

G and G. Examples of such conditions include requiring every component of both G and
G to have order at least 2 or requiring both to be connected or requiring both to have
minimum degree at least 7. In Section 3 we established better upper bounds for the power
domination number in the cases where both G and G are connected or both have every
component of order at least 3.

By contrast, results on products are very sparse for both domination number and
power domination number. Historically, the Nordhaus-Gaddum sum upper bound has
often been determined first, and then used to obtain the product upper bound, as in
the case of Nordhaus and Gaddum’s original results [16] (see Theorem 1). In order to
use this technique of getting a tight product bound from a tight sum bound, one needs
the sum upper bound to be optimized with approximately equal values or the sum lower
bound to be optimized on extreme values. The sum lower bound for the domination
number is optimized at the extreme values, and therefore the tight lower bound for the
sum yields a tight lower bound for the product. However, all available evidence suggests
that, for both the domination number and the power domination number, the sum upper
bound is optimized only at extreme values. For example, the sum upper bound of n + 1
over all graphs is attained only by the values 1 and n for both the domination and
power domination numbers. Thus, for the domination number and the power domination
number, the Nordhaus-Gaddum product upper bound presents challenges.

Further evidence indicating that the sum bound is optimized only on extreme values
comes from random graphs. And it is also interesting to consider the “average’” behavior,
or expected value, of the sum and product of Z, γ, and γP using the Erdős Rényi random
graph G(n, 1

2
) (whose complement is also a random graph with edge probability 1

2
). Let

G = G(n, 1
2
).

Let tw(H) denote the tree-width of a graph H. It is well known that tw(H) 6
Z(H) 6 n for all graphs of order n. Since tw(G) = n − o(n) [17], Z(G) = n − o(n).
Thus Z(G) + Z(G) = 2n − o(n) and Z(G) · Z(G) = n2 − o(n2), and this establishes the
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upper bound listed in Table 1 for connected graphs G and G, because G and G are both
connected with probability approaching 1 as n→∞.

For any fixed ε > 0, γ(G) 6 (1+ε) log2 n with probability going to 1 as n→∞ [15, 20].
Since γP (H) 6 γ(H) for all graphs H, γP (G) + γP (G) 6 2(1 + ε) log2 n <<

⌈
n
3

⌉
+ 1 as

n→∞ for G = G(n, 1
2
).
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Holst, K. Vander Meulen, and A. Wangsness). Zero forcing sets and the minimum
rank of graphs. Linear Algebra App., 428:1628–1648, 2008.

[2] M. Aouchiche and P. Hansen. A survey of Nordhaus–Gaddum type relations. Discrete
Appl. Math., 161:466–546, 2013.

[3] S. Arumugam and J. Paulraj Joseph. Domination in graphs. Internat. J. Management
Systems, 11:177–182, 1995.

[4] R.C. Brigham, P.Z. Chinn, and R.D. Dutton. Vertex domination-critical graphs.
Networks, 18:173–179, 1988.

[5] D. Burgarth and V. Giovannetti. Full control by locally induced relaxation. Phys.
Rev. Lett. PRL 99, 100501, 2007.
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