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a b s t r a c t

The diameter of a graph is an important factor for communication as it determines the
maximum communication delay between any pair of processors in a network. Graham
and Harary [N. Graham, F. Harary, Changing and unchanging the diameter of a hypercube,
Discrete Applied Mathematics 37/38 (1992) 265–274] studied how the diameter of hyper-
cubes can be affected by increasing and decreasing edges. They concerned whether the
diameter is changed or remains unchanged when the edges are increased or decreased.
In this paper, we modify three measures proposed in Graham and Harary (1992) to include
the extent of the change of the diameter. Let D�kðGÞ is the least number of edges whose
addition to G decreases the diameter by (at least) k, Dþ0ðGÞ is the maximum number of
edges whose deletion from G does not change the diameter, and DþkðGÞ is the least number
of edges whose deletion from G increases the diameter by (at least) k. In this paper, we find
the values of D�kðCmÞ, D�1ðTm;nÞ, D�2ðTm;nÞ, Dþ1ðTm;nÞ, and a lower bound for Dþ0ðTm;nÞwhere
Cm be a cycle with m vertices, Tm;n be a torus of size m by n.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Basis

Let G ¼ ðV ; EÞ be a graph. VðGÞ is the vertex set of G and EðGÞ � VðGÞ � VðGÞ is the edge set of G. Let u and v be two different
vertices in a graph G. We say that u and v are adjacent if ðu; vÞ 2 EðGÞ. A path from u to v, delimited by hu ¼ x0; x1;

x2; . . . ; xk ¼ vi, is a sequence of distinct vertices such that xi and xiþ1 are adjacent for 0 6 i 6 k� 1. The length of a path is
the number of edges in it. The distance between u and v in G, denoted as dGðu; vÞ, is the length of a shortest path joining them.
The diameter of a graph G, denoted as DðGÞ, is the maximum distance between any two vertices.

An interconnection network connects the processors of a parallel and distributed system. The topology of an interconnec-
tion network for a parallel and distributed system can always be represented by a graph, where each vertex represents a
processor and each edge represents a vertex-to-vertex communication link. Communication is a critical issue in the design
of a parallel and distributed system. The diameter of a graph is an important factor for communication as it determines the
maximum communication delay between any pair of processors in a network. To expedite communication, the smaller
diameter is preferred. Besides, in order to increase the transmission rate and enhance the transmission reliability, it is also
important to construct vertex-disjoint paths between any two vertices in a network [8,9].
. All rights reserved.
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1.2. Definitions and properties

In fact, the diameter of a graph can be affected by adding or deleting edges [1,4,5]. For example, let m-cycle Cm be a graph
with vertex set f0;1;2; . . . ;m� 1g and edge set fði; iþ 1Þ j 0 6 i 6 m� 1g, where addition is in integer modulo m. It is known
that DðCmÞ ¼ bm=2c [10]. Let Pm be a graph with vertex set f0;1;2; . . . ;m� 1g and edge set fði; iþ 1Þ j 0 6 i 6 m� 2g, it is
known that DðPmÞ ¼ m� 1 [10]. It is easy to check that deleting any edge renders Cm to a path of m vertices and then the
diameter increases to m� 1. On the other hand, a cycle Cm can be obtained by adding the edge ð0;mÞ to path Pm. The diam-
eter decrease to bm=2c.

Let k be an arbitrary positive integer. The diameter variability arising from change of edges of graph G is defined as
follows:

D�kðGÞ: the least number of edges whose addition to G decreases the diameter by (at least) k;
Dþ0ðGÞ: the maximum number of edges whose deletion from G does not change the diameter;
DþkðGÞ: the least number of edges whose deletion from G increases the diameter by (at least) k.

For example, D�1ðPmÞ ¼ D�2ðPmÞ ¼ � � � ¼ D�ðm�1�bm=2cÞðPmÞ ¼ 1 and Dþ1ðCmÞ ¼ Dþ2ðCmÞ ¼ � � � ¼ Dþðm�1�bm=2cÞðCmÞ ¼ 1. The n-
dimensional hypercube, Qn, consists of all n-bit binary strings as its vertices. Two vertices are adjacent if they differ only in
one bit position. Graham and Harary [4] considered changing the diameter without considering the extent of the change, i.e.,
they considered D�1ðGÞ and Dþ1ðGÞ. They showed that D�1ðQnÞ ¼ 2, Dþ1ðQnÞ ¼ n� 1 and Dþ0ðQ nÞP ðn� 3Þ2n�1 þ 2. Bouab-

dallah et al. [1] improved the lower bound of Dþ0ðQ nÞ and furthermore gave an upper bound, ðn� 2Þ2n�1 � n
bn=2c

� �
þ

2 6 Dþ0ðQ nÞ 6 ðn� 2Þ2n�1 � dð2n � 1Þ=ð2n� 1Þe þ 1.
The edge connectivity of a graph G, denoted by j0ðGÞ, is the least number of edges whose deletion disconnects G. Clearly,

DþiðGÞ 6 j0ðGÞ for all i. The diameter of a complete graph equals one. Given a graph G, for 1 6 i 6 DðGÞ � 1, D�iðGÞ is no more
than the number of edges needed to be added to G to make G be a complete graph. Note that 0 6 D�iðGÞ 6 D�jðGÞ and
0 6 DþiðGÞ 6 DþjðGÞ if i 6 j. For convenience, we write D�1ðGÞ and Dþ1ðGÞ as D�ðGÞ and DþðGÞ, respectively, throughout the paper.

In this paper, we study the change of diameter arising from the change of edges in cycles and tori. A cycle is the topolog-
ical structure of a ring network. It is one of the most common, simple and useful interconnection networks [10]. More prop-
erties, performances, and details about cycles can be found in [2,7,10]. A torus, denoted as Tm;n, is a graph obtained by the
Cartestian product of cycles Cm and Cn. It is a 2-dimension array with wraparound wires in the rows and columns. The num-
ber of edges of Tm;n is 2mn and it is known that the diameter of Tm;n is bm=2c þ bn=2c [7]. For more details on properties and
performances, such as throughput, latency, and path diversity, see [2].

2. Changing the diameter of cycles

Since deleting any edge renders Cm to a path Pm of m vertices, the diameter increases to m� 1. It follows that
Dþ0ðCmÞ ¼ 0 and DþkðCmÞ ¼ 1 for 1 6 k 6 m� 1� bm=2c:
To find D�kðGÞ, it suffices to consider adding edges to reduce the distance of all of farthest neighbors. Given a vertex v in
graph G, vertex u is called a farthest neighbor of v, denoted as vf , if dGðu; vÞ ¼ DðGÞ. Given a vertex i in Cm with
0 6 i 6 bm=2c, farthest neighbor of i is iþ bm=2c if m is even; iþ dm=2e or iþ bm=2c if m is odd.

Lemma 1. D�ðCmÞP 2.

Proof. Suppose D�ðCmÞ ¼ 1. We can assume without loss of generality that adding an edge e ¼ ð0; lÞ with 2 6 l 6 bm=2c
reduces the diameter. Let v ¼ bl=2c and �v ¼ vþ bm=2c. Since the distance from v to �v is reduced, the edge e must be used
in the shortest path from v to �v. It follows that
dCm ðv; �vÞ ¼minfdCm ðv;0Þ þ 1þ dCm ðl; �vÞ; dCm ðv; lÞ þ 1þ dCm ð0; �vÞg
¼minfbl=2c þ 1þ ðbl=2c þ bm=2c � lÞ; ðl� bl=2cÞ þ 1þ ðm� bl=2c � bm=2cÞgP bm=2c;
which is a contradiction. Therefore D�ðCmÞP 2. h

Now, we consider the case of adding two edges to cycle Cm. Let D�ðCmÞ denote the minimum diameter among those graphs
obtained by adding two edges to Cm.

Lemma 2. Let m P 5. Then, D�ðCmÞ ¼
bm=4c þ 1 if m � 0;1;2 mod 4;
bm=4c þ 2 if m � 3 mod 4:

�

Proof. Assume that we are adding two intersecting edges e1 ¼ ð0; l1 þ l2Þ and e2 ¼ ðl1; l1 þ l2 þ l3Þ to the cycle. Let G denote
the resulting graph. The four endpoints of these two edges divide the cycle into four paths Q 1;Q 2;Q 3 and Q 4 of length l1; l2; l3

and l4, respectively, where
P4

i¼1li ¼ m. The four paths Q1;Q2;Q3 and Q4 are depicted in Fig. 1.



Q2

l1

l1 + l2

l1 + l2 + l3

Q1

Q3

Q4

Fig. 1. The two intersecting edges e1 ¼ ð0; l1 þ l2Þ and e2 ¼ ðl1; l1 þ l2 þ l3Þ divide the cycle into four paths Q1;Q2;Q3 and Q4 of length l1; l2; l3 and l4,
respectively, where

P4
i¼1li ¼ m.
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The longest shortest paths among all pairs of vertices are contained in the following six cycles Yi for 1 6 i 6 6 given by
Q1 [ Q 2 [ e1; Q2 [ Q 3 [ e2; Q3 [ Q 4 [ e1;

Q4 [ Q 1 [ e2; Q1 [ Q 3 [ fe1; e2g; Q 2 [ Q 4 [ fe1; e2g;
respectively. Then, DðGÞ ¼max16i66fbjYi j
2 cg, where j Yi j denotes the number of edges in cycle Yi. It follows that DðGÞ can be

minimized when j li � lj j6 1 for all 1 6 i 6¼ j 6 4. To be specific, when m ¼ 2 mod 4, it follows that two longer paths of length
dm=4e are adjacent, e.g., l1 ¼ l4 ¼ bm=4c (or dm=4e) and l2 ¼ l3 ¼ dm=4e (or bm=4c) so that the longest cycle among Yj has a
length of bm=2c þ 2. Therefore, for m � 2 mod 4, D�ðCmÞ ¼ bm=4c þ 1 which can be achieved by adding edges ð0; bm=2cÞ and
ðbm=4c; d3m=4eÞ into Cm. When m � 0;1;3 mod 4, we can arbitrarily assign bm=4c and dm=4e to li, say ð0; bm=2cÞ and
ðbm=4c; b3m=4cÞ. Thus,
D�ðCmÞ ¼
bm=4c þ 1 if m � 0;1;2 mod 4;
bm=4c þ 2 if m � 3 mod 4:

�

Suppose that we can also reduce the diameter to bm=4c þ 1 or bm=4c þ 2, depending on m, by adding two non-intersect-
ing edges. These two non-intersecting edges partition Cm into four paths of length h1;h2;h3, and h4, where

P4
i¼1hi ¼ m.

That is, the two non-intersecting edges are given by ð0;h1Þ and ðh1 þ h2;h1 þ h2 þ h3Þ. We can assume without loss of
generality that where 2 6 h1 6 h3 and 0 6 h2 6 h4. Let v1 ¼ bh1=2c, v2 ¼ h1 þ h2 þ bh3=2c and v3 ¼ h1 þ h2 þ h3 þ bh4=2c. It
follows that
dCmðv1; v2Þ ¼ dh1=2e þ h2 þ bh3=2c; dCm ðv1; v3Þ ¼ bh1=2c þ dh4=2e; dCm ðv2; v3Þ ¼ dh3=2e þ bh4=2c
and moreover, dCm ðv1; v2Þ þ dCm ðv1; v3Þ þ dCm ðv2; v3Þ ¼ m. Therefore, maxfdCm ðv1; v2Þ, dCm ðv1; v3Þ; dCm ðv2; v3ÞgP dm=3e, which
is a contradiction. Hence, the lemma follows. h

Based on the above proof, the two edges e1 and e2 added to Cm achieving D�ðCmÞ are given by
e1 ¼ ð0; bm=2cÞ and e2 ¼ ðbm=4c; d3m=4eÞ for m � 2 mod 4;
e1 ¼ ð0; bm=2cÞ and e2 ¼ ðbm=4c; b3m=4cÞ for m � 0;1;3 mod 4:

ð1Þ
By Lemmas 1 and 2 we have the following theorem.

Theorem 1. D�kðCmÞ ¼ 2 for all m P 8 and 1 6 k 6 bm=2c � D�ðCmÞ.

When m ¼ 7, adding two edges to Cm does not decrease the diameter, hence, D�ðC7ÞP 3. In fact, it is easy to show that
D�ðC7Þ ¼ 3. It can be verified that D�ðC6Þ ¼ 2 and then D�ðC6Þ ¼ 2. To find D�ðCmÞ for m 6 5 and D�2ðCmÞ for m ¼ 6;7, we
need to add edges for Cm to become a complete graph.

One may ask whether the diameter can be further reduced by adding few more edges. However, we cannot reduce the
diameter by using similar idea as in the proof of Lemma 2 to add three or four intersecting edges which equi-partition a cycle
into six or eight paths, i.e., the length of these paths differing at most one.

Nonetheless, we can further reduce the diameter of Cm to approximately bm=5c, bm=6c and bm=8c by adding five edges, six
edges and twelve edges, that equi-partition the cycle into five paths, six paths and eight paths. Let the resultant graphs be
called Cm;5;Cm;6, and Cm;8. To be specific, let r ¼ 5;6;8. For m � 2 mod r we particularly put two longer paths of length dm=re
to be adjacent. It follows that
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DðCm;rÞ ¼
bm=rc þ 1 m � 0;1;2 mod r;

bm=rc þ 2 m � 3;4; . . . ; r � 1 mod r

�

for r ¼ 5;6;8. And yet it is unknown whether these constructions are optimal.

3. Changing the diameter of tori

Let G1 ¼ ðV1; E1Þ and G2 ¼ ðV2; E2Þ be two graphs. The Cartesian product G ¼ ðV ; EÞ of G1 and G2, denoted by G ¼ G1 � G2, is
given by V ¼ V1 � V2, and E ¼ fðu1u2; v1v2Þ j u1 ¼ v1 and ðu2; v2Þ 2 E2;or u2 ¼ v2 and ðu1; v1Þ 2 E1g. Let Tm;n be a 2-dimen-
sional torus of size m by n which can be treated as the cartesian product of Cm and Cn, i.e., Cm � Cn. We assume without loss
of generality that m P n P 3 throughout this section. Each vertex v in Tm;n is represented by v ¼ ðv1; v2Þ where 0 6 v1 6

m� 1 and 0 6 v2 6 n� 1. We also use vð1Þ and vð2Þ to denote the first and the second coordinates of v, respectively, i.e.,
vð1Þ ¼ v1 and vð2Þ ¼ v2. For ease of exposition in this section, each edge of Tm;n or path are delimited by h and i. We assume
m P n throughout this section.

Let Vf ðvÞ denote the set of the farthest neighbors of v, then
Vf ðvÞ ¼ ðvð1Þ þ bm=2c; vð2Þ þ bn=2cÞ; ðvð1Þ þ bm=2c; vð2Þ þ dn=2eÞf ;

ðvð1Þ þ dm=2e; vð2Þ þ bn=2cÞ; ðvð1Þ þ dm=2e; vð2Þ þ dn=2eÞg:
Let Pði; CnÞ and PðCm; jÞ denote paths in Tm;n defined as follows:
Pði;CnÞ ¼ hði;0Þ; ði;1Þ; . . . ; ði;n� 1Þi;
PðCm; jÞ ¼ hð0; jÞ; ð1; jÞ; . . . ; ðm� 1; jÞi:
We use Cði;CnÞ and CðCm; jÞ to denote cycles given as follows:
Cði;CnÞ ¼ hði;0Þ; ði;1Þ; . . . ; ði;n� 1Þ; ði; 0Þi;
CðCm; jÞ ¼ hð0; jÞ; ð1; jÞ; . . . ; ðm� 1; jÞ; ð0; jÞi:
Note that Cði;CnÞ and CðCm; jÞ are cycles of length n and m, respectively. Let u and v be two distinct vertices in Tm;n. We use
dCm ðu; vÞ to denote the distance from u1 to v1 in a cycle CðCm; jÞ with or without some additional edges as specified from the
context without ambiguity. Similarly, we denote dCn ðu; vÞ.

3.1. Finding D�kðTm;nÞ

To find D�ðTm;nÞ, we first find a lower bound for it.

Lemma 3. D�ðTm;nÞP 2.

Proof. We show that the diameter of Tm;n can not be reduced by adding one edge. It suffices to show the case of m;n even.
Suppose that the diameter is reduced by adding an edge e. We can assume without loss of generality that e ¼ hð0;0Þ; ðy1; y2Þi.
We consider three possibilities of the edge e. First, let y2 ¼ 0. Let v ¼ ðby1=2c;0Þ and vf be a farthest neighbor of v. Then
dTm;n ðv; vf Þ ¼ dCm ðvð1Þ; vf ð1ÞÞ þ n=2. It follows from Lemma 1 that dCm ðvð1Þ; vf ð1ÞÞ is unchanged, i.e., dCmðvð1Þ; vf ð1ÞÞ ¼ m=2.
Therefore, dTm;n ðv; vf Þ ¼ bn=2c þ bm=2c, which is a contradiction. Consequently, e can not have y2 ¼ 0. Similarly, we can prove
that e cannot have y1 ¼ 0.

Finally, let y1 6¼ 0 and y2 6¼ 0. Furthermore, we can assume without loss of generality that 0 6 y1 6 m=2 and 0 6 y2 6 n=2.
For vertices v satisfying vð1Þ > m=2 and vð2Þ 6 n=2, then e is not in any shortest path from v to vf , i.e., dTm;n ðv; vf Þ ¼ bn=2cþ
bm=2c, which is a contradiction. Thus, the lemma follows. h

Theorem 2. D�ðTm;nÞ ¼ 2 for m P 12.

Proof. Let G be the graph obtained by adding the following two edges to Tm;n:
e1 ¼ hð0; bn=2cÞ; ðbm=2c; bn=2cÞi;

e2 ¼
h ðbm=4c; bn=2cÞ; ðd3m=4e; bn=2cÞ i for m � 2 mod 4;
h ðbm=4c; bn=2cÞ; ðb3m=4c; bn=2cÞ i for m � 0;1;3 mod 4:

�
ð2Þ
Note that e1 and e2 are obtained from projecting the two edges specified in (1) to CðCm; bn=2cÞ. Let v be a vertex of G and vf

be a farthest neighbor of v. It suffices to show that in G we have dTm;n ðv; vf Þ 6 bn=2c þ bm=2c � 1 for all vertices v.
Note that the shortest paths from v to any vf takes at most dn=2e steps to change vð2Þ to vf ð2Þ. We construct a path from v

to vf via e1 or e2, depending on dCm ðvð1Þ; vf ð1ÞÞ. It follows that
dTm;n ðv; vf Þ 6 dCm ðvð1Þ; vf ð1ÞÞ þ dn=2e: ð3Þ
It follows from Lemma 2 that dCm ðvð1Þ; vf ð1ÞÞ 6 bm=2c � 2 when m P 12. Thus dTm;n ðv; vf Þ 6 bm=2c þ bn=2c � 1, and the
theorem follows. h

It follows from (3) that D�ðTm;nÞ ¼ 2 also holds for m ¼ 10 and n odd and for m ¼ 9;11 and n even.
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Adding the two edges specified in (2) to Tm;n, we have dCm ðvð1Þ; vf ð1ÞÞ 6 bm=2c � 3 for all vertices v when m P 14 and
m 6¼ 15. Therefore, following from (3), adding these two edges can reduce the diameter by two for m P 14 and m 6¼ 15. Thus
we have the following theorem.

Theorem 3. D�2ðTm;nÞ ¼ 2 for m P 14 and m 6¼ 15.

For m;n even and m P 4, we can reduce the diameter by one by adding two edges, hðm=2� 1;n=2� 1Þ; ðm=2;n=2Þi and
hðm=2� 1;n=2Þ; ðm=2;n=2� 1Þi, as shown in Fig. 2.

Note that the subgraph in Tm;n induced by the vertex set fðvð1Þ þ i; vð2Þ þ jÞ j 0 6 i 6 m=2;0 6 j 6 n=2g is a mesh of size
m=2þ 1 by n=2þ 1. The diameter of a mesh of size m=2þ 1 by n=2þ 1 is m=2þ n=2. For any vertex v in Tm;n, v and its farthest
neighbor vf are contained in a induced mesh of size m=2þ 1 by n=2þ 1. Besides, any induced mesh of size m=2þ 1 by
n=2þ 1 in Tm;n contains the vertices ðm=2� 1;n=2� 1Þ, ðm=2;n=2Þ, ðm=2� 1;n=2Þ, and ðm=2;n=2� 1Þg, thus the distance be-
tween v and vf is reduced by one when we add the edges hðm=2� 1; n=2� 1Þ; ðm=2;n=2Þi and hðm=2� 1;n=2Þ;
ðm=2;n=2� 1Þi to Tm;n.

3.2. Finding Dþ0ðTm;nÞ

By the definition of Dþ0ðTm;nÞ, we construct a spanning subgraph Sm;n of Tm;n with diameter bm=2c þ bn=2c instead of delet-
ing edges from Tm;n. We first construct a spanning tree Cm;n of Tm;n and then add pertinent edges to Cm;n to generate Sm;n. The
construction is described as follows:

1. Start with a spanning tree of Tm;n given by Cm;n ¼
Sn�1

j¼0 PðCm; jÞ [ Pðbm=2c;CnÞ, as shown in Fig. 3(a), which has a diameter
mþ n� 2 for m odd, and mþ n� 1 for m even.

2. Add the edge hðbm=2c;0Þ; ðbm=2c;n� 1Þi to Pðbm=2c;CnÞ to form a cycle Cðbm=2c;CnÞ, since otherwise the distance from
ð0;n� 1Þ to ðbm=2c;0Þ is bm=2c þ n� 1 > bm=2c þ bn=2c.

3. Add an edge hð0; jÞ; ð0; jþ 1Þi for all 0 6 j 6 n� 2, since otherwise the distance from ð0; jÞ to ð0; jþ 1Þ is
2bm=2c þ 1 > bm=2c þ bn=2c. Thus, the path Pð0;CnÞ is added.

4. Add an edge hð0; jÞ; ðm� 1; jÞi to PðCm; jÞ to form a cycle CðCm; jÞ for all 2 6 j 6 n� 1, since otherwise the distance from
ð0; j� 2Þ to ðm� 1; jÞ is mþ 1 > bm=2c þ bn=2c. Since the distance from ð0; jþ 2Þ to ðm� 1; jÞ for j ¼ 0;1 is
mþ 1 > bm=2c þ bn=2c, we add two edges hð0;0Þ; ðm� 1;0Þi and hð0;1Þ; ðm� 1;1Þi. That is, CðCm; jÞ for all 0 6 j 6 n� 1
are formed.
Fig. 2. Adding two edges in T8;6 to reduce the diameter by one.

m/20 1
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n-2

0 1

1

m-2 m-1
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0 1 m-2 m-1

1
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n-1
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a b c

Fig. 3. (a) Cm;n , (b) Sm;n for m even, and (c) Sm;n for m odd.
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5. When m is odd, we add the edge hð0;0Þ; ð0;n� 1Þi to Pð0; CnÞ to form Cð0;CnÞ, since otherwise the distance from ði;0Þ to
ði� bm=2c � 1; bn=2c þ 1Þ for i P bm=2c þ 1 is bm=2c þ bn=2c þ 1.

In summary, the spanning subgraph Sm;n is given by
Sm;n ¼
Sn�1

j¼0 CðCm; jÞ [ Cðbm=2c; CnÞ [ Cð0;CnÞ for m odd;Sn�1
j¼0 CðCm; jÞ [ Cðbm=2c; CnÞ [ Pð0;CnÞ for m even;

(

as shown in Fig. 3b and c. It is observed that the number of edges in Sm;n is mnþ 2n� 1 for m even, and mnþ 2n for m odd.

Lemma 4. DðSm;nÞ ¼ bm=2c þ bn=2c.

Proof. First consider m even. Let x ¼ ðx1; x2Þ and y ¼ ðy1; y2Þ be two distinct vertices. We distinguish the following cases of x
and y.

Case (1): x1; y1 6 m=2.
We can assume without loss of generality that x2 6 y2 after relabeling of the second coordinate. Then,
dSm;n ðx; yÞ ¼minfx1 þ y1 þ y2 � x2; m� ðx1 þ y1Þ þ dCn ðx2; y2Þg, where dCn ðx2; y2Þ 6 bn=2c since the cycle
Cðm=2;CnÞ can be traversed.
If x1 þ y1 P m=2, then dSm;n ðx; yÞ ¼ m� ðx1 þ y1Þ þ dCn ðx2; y2Þ 6 bm=2c þ bn=2c.
If x1 þ y1 < m=2 and x1 þ y1þ y2 � x2 6 bm=2c þ bn=2c, then dSm;n ðx; yÞ 6 bm=2c þ bn=2c.
If x1 þ y1 < m=2 and x1 þ y1 þ y2 � x2 > bm=2c þ bn=2c, then y2 � x2 > bn=2c, i.e., dCn ðx2; y2Þ ¼ n� ðy2 � x2Þ. It fol-
lows that dSm;n ðx; yÞ ¼ m� ðx1 þ y1Þþ dCn ðx2; y2Þ < mþ n� bm=2c þ bn=2c ¼ m=2þ dn=2e, i.e., dSm;n ðx; yÞ 6 bm=2cþ
bn=2c.

Case (2): x1 6 m=2 and y1 P m=2.
We can assume without loss of generality that y2 P x2. Then, dSm;n ðx; yÞ ¼ minfdCm ðx1; y1Þ þ y2 � x2; y1 � x1þ
dCn ðx2; y2Þg, where dCn ðx1; y1Þ 6 m=2 and dCm ðx2; y2Þ 6 bn=2c.
If y2 � x2 6 bn=2c, then dSm;n ðx; yÞ ¼ dCm ðx1; y1Þþ y2 � x2 6 bm=2c þ bn=2c.
If y2 � x2 > bn=2c and y1 � x1 6 m=2, then dSm;n ðx; yÞ ¼ y1 � x1 þ dCn ðx2; y2Þ 6 bm=2cþ bn=2c.
If y2 � x2 > bn=2c, y1 � x1 > m=2 and y1 � x1 �m=2 P y2 � x2 � bn=2c, then y1 � x1 � ðy2 � x2ÞP m=2� bn=2c. It
follows that
dSm;n ðx; yÞ ¼ dCmðx1; y1Þ þ y2 � x2 ¼ m� ðy1 � x1Þ þ y2 � x2 6 bn=2c �m=2þm ¼ bm=2c þ bn=2c:

If y2 � x2 > bn=2c, y1 � x1 > m=2 and y1 � x1 �m=2 < y2 � x2 � bn=2c, then y1 � x1 � ðy2 � x2Þ < m=2� bn=2c. It fol-
lows that

dSm;n ðx; yÞ ¼ ðy1 � x1Þ þ dCn ðx2; y2Þ ¼ y1 � x1 þ n� ðy2 � x2Þ < m=2� bn=2c þ n;

i.e., dSm;n ðx; yÞ 6 bm=2c þ bn=2c.

Case (3): x1 P m=2 and y1 6 m=2.

It can be similarly proved as Case (2).
Case (4): x1; y1 P m=2.

We can assume without loss of generality that y2 P x2. Then, dSm;n ðx; yÞ ¼minf2m� ðx1 þ y1Þ þ y2 � x2; x1 þ y1�
mþ dCn ðx2; y2Þg, where dCn ðx2; y2Þ 6 bn=2c.

If x1 þ y1 6 3m=2, then dSm;n ðx; yÞ ¼ x1 þ y1 �mþ dCn ðx2; y2Þ 6 bm=2c þ bn=2c.
If x1 þ y1 > 3m=2, and y2 � x2 6 bn=2c, then dSm;n ðx; yÞ ¼ 2m� ðx1 þ y1Þ þ y2 � x2 6 bm=2c þ bn=2c.
If x1 þ y1 > 3m=2, y2 � x2 > bn=2c and x1 þ y1 � 3m=2 P y2 � x2 � bn=2c, then x1 þ y1 � ðy2 � x2ÞP 3m=2� bn=2c. It

follows that
dSm;n ðx; yÞ ¼ 2m� ðx1 þ y1Þ þ y2 � x2 6 m=2þ bn=2c ¼ bm=2c þ bn=2c:
If x1 þ y1 > 3m=2, y2 � x2 > bn=2c and x1 þ y1 � 3m=2 < y2 � x2 � bn=2c, then x1 þ y1 � ðy2 � x2Þ < 3m=2� bn=2c. It follows
that
dSm;n ðx; yÞ ¼ x1 þ y1 �mþ n� ðy2 � x2Þ < 3m=2� bn=2c �mþ n ¼ m=2þ dn=2e;
i.e., dSm;n ðx; yÞ 6 bm=2c þ bn=2c.
Hence, DðSm;nÞ 6 bm=2c þ bn=2c when m is even. Similarly, we can show that DðSm;nÞ 6 bm=2c þ bn=2c for m odd, where

Sm;n contains one more edge hð0;0Þ; ð0;n� 1Þi than it for m even. Thus the lemma follows. h

A lower bound for Dþ0ðTm;nÞ is immediately obtained.

Lemma 5. Dþ0ðTm;nÞP
mn� 2nþ 1 if m is even;
mn� 2n if m is odd:

�
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Let D�ðSTm;nÞ ¼minfDðTÞ j T is any spanning tree of Tm;ng.

Lemma 6. D�ðSTm;nÞ ¼
mþ n� 1 if m and n are even;
mþ n� 2 otherwise:

�

Proof. We construct a spanning tree other than Cm;n as follows:
C0m;n ¼
[m�1

i¼0

Pði;CnÞ [ PðCm; bn=2cÞ:
The upper bound of D�ðSTm;nÞ is provided by the spanning trees Cm;n for m odd and C0m;n for m even.
To show the lower bound, we first consider m;n even. Suppose that the diameter of a spanning tree is less than or equal to

mþ n� 2. Then all of the vertices are at distance m=2þ n=2� 1 or less from its center which is a contradiction since the
eccentricity of each vertex in Tm;n is m=2þ n=2. (The eccentricity of a vertex v in a graph G is defined as maxu2VðGÞdðv;uÞ.
A center of graph G is a vertex with smallest eccentricity.)

Second, consider that one of m and n is odd, say, m is odd. Suppose that the diameter of a spanning tree is less than or
equal to mþ n� 3. Then all of the vertices are at distance bm=2c þ n=2� 1 ¼ dm=2e þ n=2� 2 or less from its center which is
a contradiction since the eccentricity of Tm;n is bm=2c þ n=2. Similarly, we can show the case that n is odd.

Third, consider that both m and n are odd. Removing an edge from Cm and from Cn yield a path of even length m� 1 and
n� 1, respectively. It follows that the center of any spanning tree has a radius at least ðm� 1Þ=2þ ðn� 1Þ=2. Therefore, the
minimum diameter of any spanning tree is at least two times of the radius, i.e., mþ n� 2.

Hence, the lemma follows. h

Our constructed spanning trees Cm;n and C0m;n can achieve the D�ðSTm;nÞ for m odd and for m even, respectively. Note that
Cm;n also achieves the D�ðSTm;nÞ when both m and n are even. Our construction of Sm;n starts with a spanning tree with diam-
eter D�ðSTm;nÞ if m is odd. On the other hand, if m is even, we start with C0m;n to construct a spanning subgraph similar to Sm;n

as follows:
S0m;n ¼
[m�1

i¼0

Cði;CnÞ [ CðCm; bn=2cÞ [ PðCm;0Þ;
which also has a diameter bm=2c þ bn=2c. We note j EðS0m;nÞ j¼ mnþ 2m� 1 Pj EðSm;nÞ j¼ mnþ 2n� 1.

3.3. Finding Dþ1ðTm;nÞ

We have the following lemma.

Theorem 4. DþðTm;nÞ ¼
2 when m and n are odd number;
4 when m and n are even number;
3 otherwise:

8<
:

Proof. Each pair of farthest neighbors in Tm;n can be connected by two, three and four internally vertex-disjoint shortest
paths of length bm=2c þ bn=2c for m;n odd, one of m;n odd, and m;n even, respectively. Thus we obtain a lower bound of
DþðTm;nÞ. On the other hand, when m;n are odd, deleting the edges hð0;0Þ; ð0;1Þi and hð0;0Þ; ð1;0Þi increases the distance
from ð0;0Þ to ðbm=2c; bn=2cÞ by 1. When one of m and n is odd, say m, deleting these three edges hð0;0Þ; ð1;0Þi,
hð0; 0Þ; ð0;1Þi and hð0; 0Þ; ð0; ðn� 1ÞÞi increases the distance from ð0;0Þ to ðbm=2c; bn=2cÞ by 1. When m and n are even, we
can always find four internally vertex-disjoint shortest paths between ð0;0Þ to its farthest neighbors. Hence the lemma fol-
lows. h
4. Summary

In this paper, we have studied the diameter variability arising from the change of edges for cycles and tori. The relation
between the change of edges and diameters are listed in following table.
Pm
 Cm
 Qm
 Tm;nðmPnÞ
Dþ1ð�Þ
 1
 1
 n� 1 [4]
 2 when m and n are odd number

4 when m and n are even number

3 otherwise
D�1ð�Þ
 1
 2 when m P 8
 2 [4]
 2 when m P 12

D�2ð�Þ
.

1
.

2 when m P 8
.

Unknown
 2 when m P 12 and m 6¼ 15

..

�

..
 ..
 Unknown
 Unknown

D�ðbm=2c�D ðCmÞÞð�Þ
.

1
.

2 when m P 8
 Unknown
 Unknown

..
 ..
 Unknown
 Unknown
 Unknown

D�ðm�1�bm=2cÞð�Þ
 1
 Unknown
 Unknown
 Unknown



In particular, we construct supergraphs of these given graphs such that the diameter is reduced by a constant k. Some
supergraphs presented in this paper are shown to be the smallest in terms of the number of edges.
In Section 3.2, we wonder whether Sm;n is a smallest spanning subgraph having a diameter bm=2c þ bn=2c. And we con-
jecture that Dþ0ðTm;nÞ ¼j EðTm;nÞ j � j EðSm;nÞ j. Calculating the number of edges whose removal increases the diameter may
help in finding the wide diameter of the underlying graph. We wonder whether we can apply similar proof techniques pre-
sented in this paper to find the wide diameter of graph products of two graphs. [3] and [6] are surveys of wide diameter and
related things.
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