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Abstract

The length and wide of containers between any
pair of vertices of a digraph give a good mea-
sure of the fault tolerance of an interconnec-
tion network. Indeed, many parameters related
to the fault tolerance can be calculated from
them, as the connectivity, wide-diameter and
fault-diameter. In this paper we give containers
and find the values of the connectivities, wide-
diameters and fault-diameters for a given class of
digraphs of small diameter.
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1. Introduction

Interconnection networks are usually modeled by
graphs, where the switching elements or proces-
sors are represented by the vertices, while the
communication links are represented by edges (if
they are bidirectional) or arcs (if they are uni-
directional). Some concepts on graphs appear

- to be especially useful in order to analyze the

efficiency and the reliability of an interconnec-
tion network model. For example, the wide-
distance, wide-diameter and fault-diameter are a
good measure of the fault tolerance capability of
a network (8, 9, 10]. :

Some upper bounds for the wide-diameter and
fault-diameter in de Bruijn and Kautz digraphs
have been studied in {2, 11]. In [13] similar re-
sults were presented for the bipartite digraphs

BD(d,dP~% + dP~1) [6]. More generally, in [3]
bounds were presented for the wide-diameter and
fault-diameter in Bruijn and Kautz generalized
cycles [7]. The previous results arise from par-
ticular topological properties of each family of
networks.

2. Definitions

Let G = (V, E) denote a simple digraph with no
loops or parallel edges. The vertex connectiv-
ity of a digraph G is x(G), defined as the min-
imum number of vertices whose deletion discon-
nects G. Analogously the arc connectivity A(G)
id the minimum number of arcs to be removed
in order to disconnect the graphs. The (w — 1)-
vertez-fault-diameter, Dy, (G), of a graph G is the
maximum of the diameters of the digraphs ob-
tained by removing at most w — 1 vertices from
G. The (w—1)-arc-fault-diameter, D, (G), is de-
fined analogously.

Let z and y be two vertices of a digraph G.
Two paths from z to y are said to be vertez-
disjoint or simply disjoint if they do not have any
internal vertex in common. A container from a
vertex z to another vertex y is a set C(z,y) of
disjoint paths from z to y. The width w(C(z,y)
of a container C(z,y) is the number of disjoint
paths that it has, and its length [(C(c,y)), is the
maximum length of its paths. For an integer w,
0 < w < &(G), the w-wide-distance from z to y,
dw(z,y), is the minimum length of all containers
of width w from z to y. Finally, the w-wide-
diameter of the digraph G, d,(G), is the maxi-



mum w-wide-distance among all pairs of different
vertices in G.

In general, the following relations hold:
dw(G) > Dy(G) and d(G) > DI (Q). Also
there exist some relations between these two
parameters, the connectivity and the diameter.
From the definition, D;(G) and D}(G) coincide
with the diameter of Q. If k = k(G) there is a
container of width s between every pair of dis-
tinct nodes. Clearly, Dy, (G) < Dy41(G) and
D,,(G) £ D;,;1(G). In particular, since D(G) =
oo if G is not connected, the vertex-connectivity
# = £(G) and the arc-connectivity \ = A(G) are,
respectively, the minimum values of w satisfying
Dw41(G) = c0 and D!, (@) = oo.

For a path P in G, |P| will denote its length.
If = and y are two vertices in P, the subpath of
P from z to y will be denoted as P(z,y).

For more information on graph concepts the
reader is referred to [1].

3. Containers

We start by introducing a new parameter on di-

graphs that allows us to define the class of graphs -

we are going to work on.

Definition 8.1 Let G be a simple digraph with
diameter D, we define r = T(G) as the greatest
integer 1 < r < D, such that for any pair of

vertices z,y hold:

(1) if d(z,y) < r, there is only one shortest path v

from z toy, and every other path has length
greater than r;

(2) if d(z,y) = r, there is only one shortest path
from z to y.

This parameter is closely related to the para-
meters £o (5], £ [12] and ¢, [4] which have been
shown to be useful to study the fault tolerance of
iterated line digraphs.

As an example, note that for Cn, the cycle of
length n, since there is only one shortest path
between any two vertices, we have r(Cp) =n-1.
Analogously for Py, the path of length n,r(P,) =
n. On the other hand, for the complete digraph
on n vertices K, the shortest path is unique only
between adjacent vertices, so r(K,) = 1.

The following two theorems provide a method
to construct containers between any two vertices,
whose length exceed the diameter in at most two
units.

Theorem 3.1 Let G = (V,E) be a simple di-
graph with minimum degree d, diameter D and

‘ parameter r = r(G). If D < 2r — 1, there exists

a container of wide d and length at most D + 2
between every pair of non-adjacent vertices.

Proof: Let u and v be a pair of non-adjacent
vertices of G. Since d is the minimum de-
gree, there exist sets of vertices {u1,ug,.. ., uq4}
and {vy,vy,...,v4}, adjacent from v and to v,
respectively. Now, among all the paths from
{u1,u,...,uq4} to {v1,v0,...,v4} , we consider
a shortest one, let us say, P;. For simplicity, we
assume that its first vertex after u is u1, and
the last one before v is v;. Then, we choose a
shortest path from {ua,...,uq} to {va,...,va},
let us say P, and again we suppose that up and
vy are the first vertex after u and the last one
before v, respectively. Repeating this procedure,
we finally have paths P}, P,, ..., Ps, where for
each i = 1,...,d, P, is a shortest path from

{ui, ..., uq} to {vi,...,va}. We are going to

prove that they are disjoint when the condition
D < 2r —1 holds.

Suppose that two paths P and F; (i < j)
have a common vertex, let us say w. By the
construction, d(u;, w) + d(w,v;) < D < 2r — 1.
This implies that at least one of the distances,
d(ui,w) or d(w,v;) is at most r — 1. Without
loss of generality, suppose that duj,w) <r-—1.
Then, there is a path from u to w of length
at most r, and since the paths u,u;,...w and

U, Uj, ... w are different, by the definition of the
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parameter 7 it must be d(uj,w) > r. Now, if
d(w,v;) < r—1, reasoning as before we conclude
that d(w,v;) > r, so d(uj,w) + d(w,v;) > 2r,
which contradicts d(u;,w) + d(w,v;) < D <
2r — 1. If not, d{w,v;) > r and then, because
of the construction of P; and P;, since ¢ < j,
it must be d(w,v;) > d(w,v;) so again we have
d(uj, w)+d(w,v;) > 2r, which is a contradiction.

Note that if w = wu;, then P; connects u to
u;. Since d{u,u;) = 1 < r, then |Pj(u,w;)| > r
and |Pj(u;,v5)] < r because |Pj| < D. This is
a contradiction due to the construction of the
paths. Indeed, |P;(u;,v)] — 1 < |Pj(u;,v)| — 1,
so |Pi(ui,v)] < |Pj(uiyv)| < r so it must be
P;(u;,v) = Pj(u;, v) which is not possible because
v; # vj. As a result, u # u;, and analogously it
can be proved that u # uj, v # v; and v # v;.

Since F; is a shortest path between u; and v;
for all ¢ = 1,...,d, length of the container is
upper bounded by D + 2. &

There is also an arc version of the previous
theorem.

Theorem 3.2 Let G = (V,E) be a simple di-
graph with minimum degree d, diameter D and
parameter r = v(G). If D < 2r, there erist d
arc-disjoint paths of length at most D +2 between
every pair of different vertices.

Proof: Let u and v be a pair of different ver-
tices of G. Since d is the minimum degree,
if u is not adjacent to v, there exist vertex
sets {ug,ug,...,uq} and {vi,ve,...,v4}, adja-
cent from u and to v, respectively. Proceed-
ing as in the proof of Theorem 3.1 we con-
struct paths Py, Ps,..., P; from {ui,ug,...,uq}
to {v1,v2,...,v4}. If wv is an arc, we choose Py
to be such arc. Then, we consider the sets of
vertices {ug,...,uq} and {vq,...,v4}, adjacent
from u and to v to construct paths P,..., Py
as before. We are going to prove that the paths
Py, ..., P; are arc-disjoint under the assumption
D < 2r. Suppose that two paths P; and F;
(¢ < j) have a common arc, let us say wz. By

the construction d(u;, w) +1+d(z,v;) < D < 2r,
which implies that at least one of the distances,
d(ui, w) or d(z,v;), is at most r — 1. Suppose
that d(u;,w) < r— 1. Then, there is a path
from v to w of length at most r, so it must
be d(uj,w) > r. Now, if d(z,;) < r -1, as
before we obtain d(z,v;) + 1 > r and there-
fore d(uj,w) + d(z,v;) > 2r, which contradicts
d(uj,w) + 1+ d(z,v;) < D < 2r. If not, then
d(z,v;) > r and since ¢ < j, we have d(z,v;) > r.
As a consequence, d(u;, w)+d(z,v;) > 2r, which
is also a contradiction. In the same way as it was
done in the proof of Theorem 3.1, it is possible
to bound the length of the paths P,...,P; by
D+2.m ‘

4. Fault Tolerance

This section is devoted to use the previous re-
sults about containers to obtain values of several
parameters concerning with the fault tolerance.
These are the wide-diameters, connectivities and
fault-diameters.

The next two corollaries of Theorems 3.1 and
3.2 respectively, give us the exact values for the
wide-diameters.

Corollary 4.3 Let G = (V,E) be a simple di-
graph with minimum degree d, diameter D and
parameter r =r(G). If D <2r -1,

_f D+1, w=2,...d-1;
d‘“(G)—{D+2, w=d.m

Corollary 4.4 Let G = (V,E) be a simple di-
graph with minimum degree d, diameter D and
parameter r = r(G). If D < 2r,

[ D+1, w=2..d-1
dw(G)‘{D+2, w=d.m

The vertex connectivity x(G) is the minimum
value of w satisfying D,,1(G) = oo. Since
dy+1(G) < Dyt1(G), we have the following
corollary of Theorem 3.1.




Corollary 4.5 Let G = (V,E) be a simple di-
graph with minimum degree d, diameter D and
parameter r = r(G). Then,

k(@) =d, if D<2r—1.m

Analogously, since d,(G) < D,,.1(G), we
have the next corollary of Theorem 3.2 for the
arc connectivity A(G).

Corollary 4.6 Let G = (V,E) be a simple di-
graph with minimum degree d, diameter D and
parameter r = r(G). Then,

ANG)=d,if D<2r. ®

For the fault-diameters, the following upper
bounds arise from Theorems 3.1 and 3.2, respec-
tively.

Corollary 4.7 Let G = (V,E) be a simple di-
graph with minimum degree d, diameter D and
parameter v = r(G). If D < 2r — 1,

D+1, w=2,...d-1;

Corollary 4.8 Let G = (V,E) be a simple di-
graph with minimum degree d, diameter D and
parameter r = r(G). If D < 2r,

, D+1, w=2,...d-1;
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