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Abstract

In this paper, we use the relationship between zero forcing and power domination established in Dean

et al. to obtain the inequality
⌈

Z(G)
∆(G)

⌉
≤ γP (G) where γP (G) is the the power domination number of

G, Z(G) is the zero forcing number of G, and ∆(G) is the maximum degree of G. We apply this to
establish new results for both parameters, including the power domination number for the Cartesian
product of two cycles and the zero forcing number of the lexicographic product of regular graphs. We
also establish bounds on the effect of a graph operation (vertex and edge deletion, edge contraction, and
edge subdivision) on the power domination number.

Keywords power domination, zero forcing, maximum nullity, minimum rank
AMS subject classification 05C69, 05C50

1 Introduction

Electric power companies need to monitor the state of their networks continuously. One method of monitoring
a network is to place Phase Measurement Units (PMUs) at selected locations in the system, called electrical
nodes or buses, where transmission lines, loads, and generators are connected. A PMU placed at an electrical
node measures the voltage at the node and all current phasors at the node [2]. The placement of PMUs at
all nodes of a network is a trivial solution to the monitoring problem. Because of the cost of a PMU, the
trivial solution is not feasible, and it is important to minimize the number of PMUs used while maintaining
the ability to observe the entire system.

This problem was first studied in terms of graphs by Haynes et al. in [12]. Indeed, an electric power
network can be modeled by a graph where the vertices represent the electric nodes and the edges are
associated with the transmission lines joining two electrical nodes. In this model, the power domination
problem in graphs consists of finding a minimum set of vertices from where the entire graph can be observed
according to certain rules. In terms of the physical network, such a minimum set of vertices will provide the
locations where the PMUs should be placed in order to monitor the entire graph at minimum cost. A PMU
measures the voltage and phase angle at the vertex where it is located and also at other vertices or edges
according to certain propagation rules (see Section 1.1 for the formal definitions of this and other terms).
Since its introduction in [12], the power domination number and variations have generated considerable
interest (see, for example, [4, 5, 8, 9]).

As was pointed out in [7], a careful examination of the power domination definition leads naturally
to the study of zero forcing. The zero forcing number was introduced in [1] as an upper bound for the
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maximum nullity of real symmetric matrices whose nonzero pattern of off-diagonal entries is described by a
given graph, and independently by mathematical physicists studying control of quantum systems.

In Section 2 we use the connection between power domination and zero forcing that was established in
[7] to obtain a lower bound for the power domination number γP as a function of the zero forcing number Z,
or equivalently the upper bound on the zero forcing number as a function of the power domination number
(Theorem 2.2 below). We then use this relationship to prove new results for both parameters. We show that
γP (Cn�Cm) =

⌈
n
2

⌉
for m ≥ n ≥ 3, where Cn is a cycle of order n. Next we obtain a bound on the zero

forcing number Z(G ∗H), where G and H are regular graphs and G ∗H is the lexicographic product of G
and H, and use this result to compute Z(Kn ∗Cm) = (n−1)m+ 2, for n ≥ 2,m ≥ 3, where Kn is a complete
graph of order n.

In Section 3, we discuss the effect of various graph operations on the power domination number.
First, we prove that deleting a vertex from a graph can reduce the power domination number by at most one
(or increase it by any amount). Next, we prove that the power domination number of a graph obtained by
deleting an edge or contracting an edge is either one less, the same, or one greater than the power domination
number of the original graph. Finally, we prove that the power domination number of a graph obtained by
subdividing an edge is either the power domination number of the original graph or one greater than that
number.

1.1 Power domination and zero forcing definitions

A graph G = (V,E) is an ordered pair formed by a finite nonempty set of vertices V = V (G) and a set of edges
E = E(G) containing unordered pairs of distinct vertices (that is, all graphs are simple and undirected).
The order of G is denoted by |G| := |V (G)|. For any vertex v ∈ V , the neighborhood of v is the set
N(v) = {u ∈ V : {u, v} ∈ E} (or NG(v) if G is not clear from context), and the closed neighborhood of v is
the set N [v] = N(v) ∪ {v}. Similarly, for any set of vertices S, N(S) = ∪v∈SN(v) and N [S] = ∪v∈SN [v].

A vertex v in a graph G is said to dominate itself and all vertices adjacent to v in G. A set of vertices
S is a dominating set of G if every vertex of G is dominated by a vertex in S. The cardinality of a dominating
set of minimum cardinality is the domination number of G and is denoted by γ(G).

In [12] the authors introduced the related concept of power domination by presenting propagation rules
in terms of vertices and edges in a graph. In this paper we will use a simplified version of the propagation
rules that is equivalent to the original [8]. For a set S of vertices in a graph G, define PD(S) ⊆ V (G)
recursively:

1. PD(S) := N [S] = S ∪N(S).

2. While there exists v ∈ PD(S) such that |N(v) ∩ (V (G) \ PD(S))| = 1:

PD(S) := PD(S) ∪N(v).

We say that a set S ⊆ V (G) is a power dominating set of a graph G if at the end of the process above
PD(S) = V (G). A minimum power dominating set is a power dominating set of minimum cardinality, and
the power domination number γP (G) of G is the cardinality of a minimum power dominating set.

The color change rule is: If u is a blue vertex and exactly one neighbor w of u is white, then change the
color of w to blue. We say u forces w and denote this by u→ w. A zero forcing set for G is a subset of vertices
B such that when the vertices in B are colored blue and the remaining vertices are colored white initially,
repeated application of the color change rule can color all vertices of G blue. A minimum zero forcing set
is a zero forcing set of minimum cardinality, and the zero forcing number Z(G) of G is the cardinality of a
minimum zero forcing set. The next observation is central to this paper.

Observation 1.1. [7] The power domination process on a graph G can be described as choosing a set
S ⊆ V (G) and applying the zero forcing process to the closed neighborhood N [S] of S. The set S is a power
dominating set of G if and only if N [S] is a zero forcing set for G.

The degree of a vertex v, denoted by deg v, is the cardinality of the set N(v). The maximum and
minimum degree of G are defined as ∆(G) = max{deg v : v ∈ V } and δ(G) = min{deg v : v ∈ V },
respectively. A graph G is regular if δ(G) = ∆(G). The next observation is well known (and immediate since
zero forcing on G cannot start without at least δ(G) blue vertices).
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Observation 1.2. For every graph G, δ(G) ≤ Z(G).

The set of all n × n real symmetric matrices is denoted by Sn(R). For A = [aij ] ∈ Sn(R), the graph
of A, denoted by G(A), is the graph with vertices {1, . . . , n} and edges {{i, j} : aij 6= 0, 1 ≤ i < j ≤ n}.
Note that the diagonal of A is ignored in determining G(A). The set of symmetric matrices described by an
arbitrary graph G of order n is defined as S(G) = {A ∈ Sn(R) : G(A) = G}. The maximum nullity of G is
M(G) = max{nullA : A ∈ S(G)}, and the minimum rank of G is mr(G) = min{rankA : A ∈ S(G)}; clearly
M(G) + mr(G) = |G|. The term ‘zero forcing’ comes from using the forcing process to force zeros in a null
vector of a matrix A ∈ S(G), implying M(G) ≤ Z(G) [1].

1.2 Graph definitions and notation

Let n, p, q be positive integers. A path of order n is a graph Pn with vertices V (Pn) = {xi : 0 ≤ i ≤ n− 1}
and edges E(Pn) = {{xi, xi+1} : 0 ≤ i ≤ n−2}. If n ≥ 3, the cycle of order n is the graph Cn with vertex set
V (Cn) = {xi : 0 ≤ i ≤ n− 1} and edge set E(Cn) =

{{
xi, x(i+1) mod n

}
: 0 ≤ i ≤ n− 1

}
. A complete graph

of order n is a graph Kn with V (Kn) = {xi : 0 ≤ i ≤ n− 1} and E(Kn) = {{xi, xj} : 0 ≤ i < j ≤ n− 1}. A
complete bipartite graph with partite sets X and Y of orders p and q is a graph Kp,q with V (Kp,q) = X ∪ Y
where X = {xi : 0 ≤ i ≤ p− 1} and Y = {yi : 0 ≤ i ≤ q − 1} are disjoint, and E(Kp,q) = {{xi, yj} : 0 ≤ i ≤
p− 1, 0 ≤ j ≤ q − 1}.

For a graph G = (V,E) and W ⊆ V , the induced subgraph G[W ] is the graph with vertex set W
and edge set {{w, u} ∈ E : w, u ∈ W}. The graph induced by W = V \ {v} is also denoted by G − v.
Let G = (V (G), E(G)) and H = (V (H), E(H)) be disjoint graphs. The corona of G and H, denoted by
G ◦ H, is the disjoint union of G with |G| copies of H such that the ith vertex vi of G is joined to all the
vertices in the ith copy of H. The Cartesian product of G and H, denoted by G�H, has the vertex set
V (G)×V (H). Two vertices (g, h) and (g′, h′) are adjacent in G�H if either (1) g = g′ and {h, h′} ∈ E(H),
or (2) h = h′ and {g, g′} ∈ E(G). The lexicographic product of G and H, denoted by G ∗H, has the vertex
set V (G) × V (H). Two vertices (g, h) and (g′, h′) are adjacent in G ∗ H if and only if {g, g′} ∈ E(G), or
g = g′ and {h, h′} ∈ E(H).

For a graph G with no edges, Z(G) = γP (G) = γ(G) = |G|, so we focus our attention on graphs with
edges.

2 Zero forcing lower bound for power domination number

The power domination number of several families of graphs has been determined using a two-step process:
finding an upper bound and a lower bound. The upper bound is usually obtained by providing a pattern to
construct a set, together with a proof that constructed set is a power dominating set. The lower bound is
usually found by exploiting structural properties of the particular family of graphs, and it usually consists of
a very technical and lengthy process. Therefore, finding good general lower bounds for the power domination
number is an important problem.

An effort in that direction is the work by Stephen et al. [15, Theorem 3.1] in which a general lower
bound is presented and successfully applied to finding the power domination number of some graphs modeling
chemical structures. However, their bound depends heavily on the choice of a family of subgraphs satisfying
certain properties. While in some graphs it is possible to find families of subgraphs that yield good lower
bounds, in other graphs it is not. In fact, in some graphs the only family of subgraphs satisfying the
conditions of [15, Theorem 3.1] is the family that consists of the graph itself, which yields a trivial lower
bound, as is the case for paths Pn, n ≥ 2.

A result of Dean et al. [7], stated in Theorem 2.1 below, provides an immediate lower bound for the
power domination number of a regular graph when the zero forcing number is known. This was the approach
used on hypercubes in [7]. We use this theorem to establish a lower bound on power dominating number in
terms of zero forcing number and maximum degree for any graph with an edge in Theorem 2.2 below.

Theorem 2.1. [7, Lemma 2] Let G be a graph with no isolated vertices and let S = {u1, . . . , ut} be a power
dominating set for G. Then Z(G) ≤

∑t
i=1 deg ui.
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The next theorem, which follows from Theorem 2.1, can be used to map zero forcing results to power
dominating results and vice versa (as is done in Sections 2.1 and 2.2 below).

Theorem 2.2. Let G be a graph that has an edge. Then
⌈

Z(G)
∆(G)

⌉
≤ γP (G) and this bound is tight.

Proof. Suppose G has connected components G1, . . . , Gh. First suppose Gi is a component that has an

edge, so Gi does not have isolated vertices. Choose a minimum power dominating set Si = {u(i)
1 , . . . , u

(i)
ti }

for Gi, so ti = γP (Gi). Then by Theorem 2.1, Z(Gi) ≤
∑ti
i=1 deg u

(i)
i ≤ ti∆(Gi) = γP (Gi)∆(Gi). Thus

γP (Gi) ≥
⌈

Z(Gi)
∆(Gi)

⌉
≥
⌈

Z(Gi)
∆(G)

⌉
.

Since G has an edge, ∆(G) ≥ 1, and so γP (Gj) ≥
⌈

Z(Gj)
∆(G)

⌉
for every component Gj of G (including

isolated vertices). Thus

γP (G) =

h∑
i=1

γP (Gi) ≥
h∑
i=1

⌈
Z(Gi)

∆(G)

⌉
≥

⌈
h∑
i=1

Z(Gi)

∆(G)

⌉
=

⌈∑h
i=1 Z(Gi)

∆(G)

⌉
=

⌈
Z(G)

∆(G)

⌉
Since Z(Kn) = ∆(Kn) = n− 1 and γP (Kn) = 1, the bound is tight.

The next corollary is immediate from the fact that M(G) ≤ Z(G) [1]. Although weaker than Theorem
2.2, Corollary 2.3 can sometimes be applied using a well known matrix such as the adjacency or Laplacian
matrix of the graph, even if M(G) and Z(G) are not known.

Corollary 2.3. For a graph G that has an edge and any matrix A ∈ S(G),
⌈

nullA
∆(G)

⌉
≤ γP (G).

2.1 Application to computation of power domination number of families of
graphs

In this section we apply Theorem 2.2 and results about the zero forcing number to obtain results about
the power domination number To establish the value of γP (Cn�Cm), we need to establish the zero forcing
number of Cartesian products of cycles.

Theorem 2.4. For m ≥ n ≥ 3,

M(Cn�Cm) = Z(Cn�Cm) =

{
2n− 1 if m = n and n is odd

2n otherwise.

Proof. For m = n ≥ 3, by [6, Theorem 2.18] M(Cn�Cn) = Z(Cn�Cn) = n + 2
⌊
n
2

⌋
, so M(Cn�Cm) =

Z(Cn�Cn) = 2n− 1 for n odd and M(Cn�Cn) = Z(Cn�Cn) = 2n for n even.
So assume m > n ≥ 3. It is easy to see that the vertices of two consecutive cycles form a zero forcing

set, so Z(Cn�Cm) ≤ 2n. To complete the proof we construct a matrix in S(Cn�Cm) with nullity 2n, so
2n ≤ M(Cn�Cm) ≤ Z(Cn�Cm) ≤ 2n.

A standard way to construct matrices of maximum nullity for a Cartesian product of graphs is to use
the Kronecker or tensor product of matrices [1, Observation 3.5]: If A is an n × n real matrix and B is an
m×m real matrix, then A⊗B is the n×n block matrix whose ijth block is the m×m matrix aijB. If G and H
are graphs of orders n and m, respectively, with A ∈ S(G) and B ∈ S(H), then A⊗Im−In⊗B ∈ S(G�H).
If x is an eigenvector of A for eigenvalue λ and y is an eigenvector of B for eigenvalue ν, then x ⊗ y is an
eigenvector A⊗Im−In⊗B for eigenvalue λ−ν. Since a real symmetric matrix has a full set of eigenvectors,
the multiplicity of λ− ν is multA(λ) multB(ν).

Let k =
⌈
n
2

⌉
. Let A be the matrix obtained from the adjacency matrix of Cn by changing one pair

of symmetrically placed entries from 1 to −1. Then the distinct eigenvalues of A are µi = 2 cos π(2i−1)
n ,

i = 1, . . . , k, each with multiplicity 2 except that µk = −2 has multiplicity 1 when n is odd [1, Theorem 3.8].
Once it is established that there is a matrix B ∈ S(Cm) such that µi is an eigenvalue of B of multiplicity 2
for i = 1, . . . , k, then A⊗ Im − In ⊗B has eigenvalue zero with multiplicity 2n, because every eigenvalue of
A has a corresponding eigenvalue of B with multiplicity 2.
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It remains to establish the existence of a matrix B ∈ S(Cm) such that µi is an eigenvalue of B of
multiplicity 2 for i = 1, . . . , k. In Ferguson [11, Theorem 4.3] it is shown that for any set of real numbers
λ1 > λ2 ≥ λ3 > λ4 ≥ λ5 > . . . there is a periodic Jacobi matrix B ∈ S(Cm). Thus for m odd or m ≥ n+ 2
we can choose λ2i = λ2i+1 = µi. Hall [13] showed that for m = 2k and any λ1 > λ2 > · · · > λk there is a
matrix B ∈ S(Cm) with multB(λi) = 2 for i = 1, . . . , k. This concludes the proof.

Theorem 2.5. For m ≥ n ≥ 3,

γP (Cn�Cm) =
⌈n

2

⌉
.

Proof. Since ∆(Cn�Cm) = 4 and
⌈

2n−1
4

⌉
=
⌈
n
2

⌉
for n odd, it follows from Theorems 2.2 and 2.4 that⌈n

2

⌉
≤ γP (Cn�Cm) (1)

for m ≥ n ≥ 3.
In [4, Theorem 4.2] it was proved that for m ≥ n,

γP (Cn�Cm) ≤

{
dn2 e if n ≡ 2 mod 4

dn+1
2 e otherwise.

By (1),

γP (Cn�Cm) =

{
dn2 e if n ≡ 2 mod 4

dn2 e or dn+1
2 e otherwise.

If n is odd, then dn2 e = dn+1
2 e. Finally, suppose n = 4k and denote the vertices of Cn�Cm by (a, b) with

a ∈ Zn and b ∈ Zm. It is well known that B = {(a, 0), (a, 1) : 0 ≤ a ≤ n − 1} is a zero forcing set for
Cn�Cm. Since S = {(4i, 0), (4i + 2, 1) : i = 0, . . . , k − 1} dominates B, S is a power dominating set of n

2
elements. Thus γP (Cn�Cm) = dn2 e.

Many of the proofs of the values of the power domination number for families can be simplified by
application of the relationship between power domination and zero forcing. Here we give two brief examples
of simplifying a proof, beginning with a corollary of Theorem 2.2.

Corollary 2.6. [4, Lemma 3.1] For n ≥ 3, γP (Cn ◦K1) ≥ dn6 e.

Proof. The result follows from Z(Cn◦K1) = dn2 e (see [1]) and ∆(Cn◦K1) = 3. A straightforward verification

shows
⌈
dn2 e

3

⌉
= dn6 e.

A spider or generalized star is a tree formed from a K1,n by subdividing any number of its edges any
number of times (the precise definition of edge subdivision is given in Section 3.3). The spider number sp(G)
is the minimum number of subsets into which V (G) can be partitioned so that each subset induces a spider
(such a partition is called a spider cover). For a given zero forcing set, apply the color change rule as needed
to color all vertices blue, listing the forces in the order in which they were performed. This list is called a
chronological list of forces, often denoted by F . Consider a vertex v in a power dominating set S. Perform
zero forcing using N [S] and record the chronological list of forces F . Clearly the subgraph consisting of v,
the neighbors of v together with the edges connecting each of them to v, and the vertices and edges in the
forcing paths associated with the neighbors of v defines a spider subgraph of G. This subgraph is called the
forcing spider of v (with respect to S and F) and is denoted by Tv. The set of forcing spiders of S for a
chronological list F is {Tv : v ∈ S}. The next remark gives a simpler proof of [12, Lemma 10].

Remark 2.7. Suppose T is a tree, S is a power dominating set of T , and F is a chronological list of forces
of N [S]. For v ∈ S, the forcing spider of v is an induced subgraph because any connected subgraph of a tree
is an induced subgraph. Thus the set of forcing spiders of S for a chronological list F is a spider cover of G,
so sp(T ) ≤ γP (T ). (Note that for an arbitrary graph the forcing spider of v need not be induced; in fact,
N [S] need not induce a K1,n.)
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2.2 Application to computation of zero forcing number of families of graphs

In the preceding section, we obtained bounds on the power domination number using the zero forcing number.
We take the opposite approach in this section, using Theorem 2.2 and results from power domination to
obtain results for zero forcing.

In [8, Theorem 4.1] it was proved that:

γP (G ∗H) =

{
γ(G) if γP (H) = 1
γt(G) otherwise,

(2)

where γt(G) denotes the total domination number of G, defined as the minimum cardinality of a dominating
set S in G such that every vertex in S has at least one neighbor in S.

Now, from Theorem 2.2 we know Z(G∗H) ≤ γP (G∗H)∆(G∗H). It follows easily from the definition
of lexicographic product that degG∗H(g, h) = (degG g)|V (H)|+degH h for any vertex (g, h) ∈ V (G∗H), and
therefore ∆(G ∗H) = ∆(G)|V (H)|+ ∆(H). Then from (2) above, we obtain

Z(G ∗H) ≤
{
γ(G)

(
∆(G)|V (H)|+ ∆(H)

)
if γP (H) = 1

γt(G)
(
∆(G)|V (H)|+ ∆(H)

)
otherwise.

(3)

In particular, we obtain the following result for lexicographic products of regular graphs with low
domination and power dominations numbers.

Theorem 2.8. Let G and H be regular graphs with degree dG and dH , respectively. If γP (H) = 1 and
γ(G) = 1, then Z(G ∗H) = dG|V (H)|+ dH .

Proof. Since G is dG-regular, H is dH -regular, and γP (H) = γ(G) = 1, the bound in (3) gives Z(G ∗H) ≤
dG|V (H)|+dH . Moreover, since G∗H is (dG|V (H)|+dH)-regular, Observation 1.2 tells us dG|V (H)|+dH =
δ(G ∗H) ≤ Z(G ∗H).

Corollary 2.9. For n ≥ 2 and m ≥ 3, Z(Kn ∗ Cm) = (n− 1)m+ 2.

3 Effect of graph operations on γP (G)

In this section we determine the effect of some graph operations on the power domination number by applying
techniques from zero forcing. We utilize the fact that S ⊆ V (G) is a power dominating set of G if and only
if NG[S] is a zero forcing set for G, and repeatedly use the next observation.

Observation 3.1. For any S ⊆ V (G) and v ∈ V (G), NG[S] ∪ {v} ⊆ NG[S ∪ {v}], so if NG[S] ∪ {v} is a
zero forcing set for G, then S ∪ {v} is a power dominating set of G, and γP (G) ≤ |S|+ 1.

3.1 Vertex and edge deletion

The concept of rank spread was introduced in [3] to quantify the change in the minimum rank of a graph
produced by the deletion of a vertex or an edge. In [10] this idea was extended to spreads of other parameters
including the zero forcing number, with zv(G) = Z(G) − Z(G − v) and ze(G) = Z(G) − Z(G − e) where
G− e = (V,E \ {e}). In both papers bounds on the spreads were proved. Similarly, we establish bounds on
γP (G)− γP (G− v) to quantify the effect that the deletion of a vertex (or analogously deletion of an edge)
produces on the power domination number of a graph.

Proposition 3.2. For every graph G and every vertex v, γP (G)− 1 ≤ γP (G− v).

Proof. Let T be a minimum power dominating set of G− v. Since NG−v[T ] is a zero forcing set for G− v,
NG−v[T ]∪{v} is clearly a zero forcing set for G, so by Observation 3.1, γP (G) ≤ |T |+1 = γP (G−v)+1.

The next proposition shows there is no upper bound on γP (G− v) in terms of γP (G).
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Proposition 3.3. For every integer r ≥ −1, there is a graph Gr with a vertex v such that γP (Gr − v) =
γP (Gr) + r.

Proof. If r = −1, it suffices to consider G−1 = C4 ◦ K1 and a vertex v of degree 1 in G−1, as shown in
Figure 1. Then γP (G−1 − v) = 1 = γP (G−1) + (−1). Given an integer n ≥ 3, γP (Cn) = γP (Pn−1) = 1, so
γP (Cn − v) = γP (Cn) for every vertex v in Cn. For any integer r ≥ 1, consider the graph Gr = K1,r+1 and
the vertex v of maximum degree in Gr. Then γP (Gr) = 1 and γP (Gr − v) = r + 1.

  

 

 

  

𝑣𝑣  

Figure 1: The graphs G−1 = C4 ◦K1 and G−1 − v with vertices in their minimum power dominating sets
circled

Proposition 3.4. For every graph G and for every edge e, γP (G)− 1 ≤ γP (G− e) ≤ γP (G) + 1, and these
bounds are tight.

Proof. Assume e = {v, w}. For a zero forcing set B in one of G or G−e, we assume without loss of generality
that v is blue at the time w is forced (or both v and w are in B). Then B ∪ {w} is a zero forcing set for the
other of G or G− e, so by Observation 3.1, γP (G− e) ≤ γP (G) + 1 and γP (G) ≤ γP (G− e) + 1.

To see that the bounds on edge deletion are tight: Consider the graphs Gn, obtained from two disjoint
copies of a cycle Cn by adding the edge {u, v} where u and v are in different copies of the cycle, as shown in
Figure 2. Then γP (Gn) = 2 and γP (Gn−e) = 1 for edge e = {v, w} with w 6= u (so e is in one of the cycles).
Now consider the graphs Hn, obtained from two disjoint copies of a cycle Cn by adding respective edges
between two adjacent vertices in each Cn, as shown in Figure 2; call those edges e and f . Then γP (Hn) = 1
and γP (Hn − e) = 2. There are also graphs for which deleting an edge does not alter the power domination
number, such as the family of cycles Cn.

                                                                                               

 

 

 

                                                                                               

 

w            
e            

u              v 

w            

u              v 

𝐺𝐺4 𝐺𝐺4 - e 

e            

f f 

𝐻𝐻4 𝐻𝐻4 - e 

Figure 2: The graphs G4, G4 − e, H4, and H4 − e with vertices in their minimum power dominating sets
circled

3.2 Edge contraction

Let e = {u,w} denote an arbitrary edge in a graph G = (V,E). The contraction of G with respect to e,
denoted by G/e = (V e, Ee), has V e = (V − {u,w}) ∪ {v} and Ee is obtained from E by removing all edges
incident with u or w (including e) and adding edges between the new vertex v and every vertex in G/e that
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is a neighbor in G of u or w. This process is also known as identifying the endpoints of e. The effect of edge
contraction on the zero forcing number was determined in [14, Theorem 5.1].

Proposition 3.5. For every graph G and for every edge e, γP (G) − 1 ≤ γP (G/e) ≤ γP (G) + 1, and these
bounds are tight.

Proof. Assume e = {u,w} and v is the vertex resulting from identifying u and w. Since the inequality clearly
holds for G = K2 and γP sums across connected components, we can assume that NG/e(v) 6= ∅. Also notice
that (G/e)− v = G− {u,w}.

Let T be a minimum power dominating set of G/e. If v ∈ T , then (T − {v}) ∪ {u,w} is a power
dominating set to G, so γP (G) ≤ |T |+1 = γP (G/e)+1. If v /∈ T and v ∈ NG/e(T ), there exists a vertex x ∈ T
such that v is adjacent to x in G/e. Suppose, without loss of generality, that x is adjacent to u in G. Then,
NG[T ] ∪ {w} is a zero forcing set for G, so γP (G) ≤ |T | + 1 = γP (G/e) + 1. Finally, suppose v /∈ NG/e[T ].
Then some vertex x forces v. As before, suppose that x is adjacent to u in G. Then, as shown in the proof
of [14, Theorem 5.1], NG[T ]∪ {w} is a zero forcing set for G, which implies γP (G) ≤ |T |+ 1 = γP (G/e) + 1.
In all cases, γP (G) ≤ γP (G/e) + 1.

Let S be a minimum power dominating set of G. If at least one of u,w ∈ S, then since NG/e(v) =
(NG(u) ∪ NG(w)) \ {u,w} and no vertex of S performs a force, (S \ {u,w}) ∪ {v} is a power dominating
set of G/e, implying γP (G/e) ≤ |S| = γP (G). Now assume u,w /∈ S. If at least one of u, w is in NG(S),
then NG/e[S ∪ {v}] contains the vertices (if any) that were forced by u and/or w and can therefore force
G/e, so S ∪ {v} is a power dominating set of G/e, and γP (G/e) ≤ |S| + 1 = γP (G) + 1. Finally, suppose
v, w /∈ NG[S]. Suppose u forces y before w performs a force (if neither performs a force, this step can be
skipped and NG/e[S] is a zero forcing set). Then, as shown in the proof of [14, Theorem 5.1], NG/e[S]∪{y} is
a zero forcing set for G/e, which implies γP (G/e) ≤ |S|+ 1 = γP (G) + 1. In all cases, γP (G/e) ≤ γP (G) + 1.

To see that the bounds on edge contraction are tight: Consider the graph Gn constructed from two
disjoint copies of a cycle Cn by adding an edge e connecting the two copies of Cn. Then, as shown in Figure
3, γP (Gn) = 2 and γP (Gn/e) = 1. On the other hand, if H is the graph in Figure 3 with edge e as shown,
then γP (H) = 1 and γP (H/e) = 2.

 

𝑅𝑅3 

𝑒𝑒 

𝑅𝑅3/e 

 

𝐻𝐻 

𝑒𝑒 

𝐻𝐻/e 

Figure 3: The graphs G3, G3/e, H, and and H/e with vertices in their minimum power dominating sets
circled
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3.3 Edge subdivision

Let e = {u,w} denote an arbitrary edge in a graph G = (V,E). The subdivision graph of G with respect
to e, denoted by Ge = (Ve, Ee), has Ve = V ∪ {ve} and Ee = (E \ {e}) ∪ {{ve, u}, {ve, w}}. That is, Ge is
obtained by removing edge e from G and adding a new vertex ve adjacent to the endpoints of e and to no
other vertices.

Proposition 3.6. For every graph G and every edge e, γP (G) ≤ γP (Ge) ≤ γP (G) + 1, and these bounds
are tight.

Proof. Assume e = {u,w} and ve is the vertex added in Ge. By Proposition 3.5 applied to Ge, γP (Ge)−1 ≤
γP (Ge/{u, ve}). Since the graph resulting from the contraction of edge {u, ve} in Ge is isomorphic to G,
γP (Ge) ≤ γP (G) + 1.

Let S be a minimum power dominating set of Ge. If ve ∈ S, then (S \ {ve}) ∪ {u} is also a power
dominating set of Ge, so without loss of generality assume ve 6∈ S. We show S is a power dominating set of G.
Consider a chronological list of forces F of NGe

[S] that colors Ge. One of four situations occurs (renaming
u and w if necessary), depending on whether the forces u→ ve and/or ve → w appear in F . In case neither
of the forces u → ve nor ve → w belongs to F , then F is a chronological list of forces of NG[S] that colors
G. In case both the forces u → ve and ve → w belong to F , replace the pair of forces u → ve and ve → w
by the force u → w to obtain a chronological list of forces of NG[S] that colors G. In case u → ve belongs
to F and ve → w does not belong to F , delete u→ ve to obtain a chronological list of forces of NG[S] that
colors G. In case u → ve does not belong to F and ve → w does belong to F , necessarily ve ∈ NGe

[S], so
u ∈ S, implying u,w ∈ NG[S]. Deleting ve → w gives a chronological list of forces of NG[S] that colors G.

To see that the bounds on edge subdivision are tight: If e is any edge in Pn, then (Pn)e = Pn+1 and
γP (Pn) = γP (Pn+1). Let G be the graph obtained from K4 by subdividing each edge except e once, as
shown in Figure 4. Then γP (G) = 1 and γP (Ge) = 2.

 

𝐺𝐺 
𝑒𝑒 

𝐺𝐺𝑒𝑒 

Figure 4: The graphs G and Ge with vertices in their minimum power dominating sets circled
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