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Abstract 

Let G be a digraph, LG its line digraph and A(G) and A(LG) 
their adjacency matrices. We present relations between the Jordan 
Normal Form of these two matrices. In addition, we study the spectra 
of those matrices and obtain a relationship between their characteristic 
polynomials that allows us to relate properties of G and LG, specifically 
the number of cycles of a given length. 

1 Introduction 

A digraph can be uniquely assigned a (0, l)-adjacency matrix, and recipro­
cally, every (0, l)-matrix represents a digraph. Therefore, many topological 
properties of digraphs can be studied by using algebraic methods. The spec­
trum, the characteristic and the minimal polynomials of a matrix are very 
closely related to the graph topology [2]. As it is expected, it is not possible, 
to reconstruct the adjacency matrix of a digraph from the spectrum or the 
characteristic polynomial only. However, we shall prove that this is possible 
for the case of line digraphs. Line digraphs are very important models for 
interconnection networks due to their small degree and diameter in relation 
to their large order [6]. We will explore the relationship between the adja­
cency matrices of a digraph and its line digraph and obtain results regarding 
the reconstruction of the line digraph from the spectrum of a given digraph. 
Our work uses the Jordan Normal Form of the adjacency matrix. This 
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is a useful approach when reconstructing a digraph from its spectrum. In 
the case of line digraphs, the relation obtained between the Jordan Normal 
Form of the adjacency matrices of a digraph and its line digraph leads to 
a solution for a problem presented by Schwenk and Wilson [13] by showing 
a relation between the characteristic polynomials of a digraph and its line 
digraph. As a consequence, we derive some new properties regarding the 
relationship between the number of cycles of certain length in a digraph and 
its line digraph. This is a very important result because it is well-known 
that cycles are fixed points under the line digraph, but there are also certain 
circuits and trails which produce cycles in the line digraph. 

2 Definitions and notation 

In this paper G = (V, E) stands for a simple digraph, i.e. without loops or 
multiple edges, with set of vertices V = V(G) = {vi ,V2,...,vn} and arc set 
E = E(G) = {ei, e2 , . . . , e m } . The cardinality of V is the order of G and the 
cardinality of E is the size of G. By reverting the direction of every edge 
we obtain the converse digraph of G, denoted by G*. 

For a vertex v, the out-degree 5+(v) is the number of vertices that are 
adjacent from v, and the in-degree 6~(v) is the number of vertices adjacent 
to v. The minimum out-degree and minimum in-degree will be denoted by 
6+ = S+(G) and S~ = 6~(G), respectively. The minimum degree of G is 
6 = 5(G) = mm{6~,5+}. If 6+(y) = 5~(v) — S for every vertex v, the 
digraph is said to be S-regular. A vertex is a source if its in-degree is 0, 
and a sink if its out-degree is 0. The number of sources and sinks of G are 
denoted by a = a(G) and j3 = [3(G), respectively. Note that in the converse 
digraph G*, a(G*) = j3 and /3(G*) = a. 

The adjacency matrix of a digraph G of order n is the nxn dimensional 
(0, l)-matrix A = A(G), whose (i,j) entry is 1 if and only if (vi,Vj) is an 
edge of G. Since G has no loops, the trace of A is 0. 

We assume the reader is familiar with eigenvalues, eigenvectors, charac­
teristic polynomial, minimal polynomial and Jordan Normal Form of matri­
ces. The characteristic polynomial of the graph G is PG(X), the characteristic 
polynomial of its adjacency matrix A. The eigenvalues of G are the eigen­
values of A. The algebraic multiplicity of A, m,4(A), is the multiplicity of A 
considered as a zero of the corresponding characteristic polynomial. Always, 
dim Ker(A — XIn) < m^A) and 

Ker(A - XI) c Ker(A - XI)2 C . . . Ker (A - AI)r> = Ker(A - XI)r*+1 = ... 
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where r\ < ITIA(X) is the smallest integer such that dimKer(A — XI)rx = 
m^fA). The minimal polynomial of G can be obtained as 

X 

A Jordan block matrix associated with A, denoted as J(A), is a direct sum 
of elementary Jordan matrices associated with A. These elementary Jordan 
matrices have X's in the main diagonal and l's in the above diagonal. The 
Jordan normal form or canonical form of a matrix is the direct sum of its 
Jordan blocks. At least one of those elementary Jordan matrices has size r\, 
which is the greatest order of the elementary matrices in the corresponding 
Jordan block. Therefore, if r\ = 1, each elementary Jordan matrix has 
size 1 and the corresponding Jordan block is diagonal. Through this paper 
we assume the sizes of elementary Jordan matrices in each Jordan block in 
decreasing order. The number of elementary Jordan matrices of order p > 1 
in the J(A) is denoted by Np. Then, if B = A - XI, 

Np = 2 dim KerBp - dim KerB?'1 - dim KerBp+1 (1) 

For details about the above formula see [8]. 
In the line digraph LG of a digraph G each vertex represents an edge of 

G, that is, V(LG) = {uv : (u,v) € E(G)}. A vertex uv is adjacent to a 
vertex wz if v = w, that is, whenever the edge (u, v) of G is adjacent to the 
edge (w, z) [9]. From the definition, it follows that if G has size m then LG 
has order m and size ^ 5+(v)5~(v). Furthermore, if G is of-regular (d > 1), 
has diameter D and order n, then LkG is d-regular, has diameter D + k and 
order dkn. Therefore, the iteration of the line digraph technique is a good 
method to obtain large digraphs with fixed degree and diameter. See, for 
example, [1, 6, 12, 7] for proofs and more information. 

We first show the relationship between the adjacency matrices of a di­
graph and its line digraph. For this purpose we introduce two new matrices 
associated with a digraph, whose properties allow us to obtain interesting 
results by applying Flanders Theorem [5]. As a first consequence, a sim­
ple relation between the characteristic polynomials of a digraph and its line 
digraph is obtained. This solves in a new way a problem introduced by 
Schwenk and Wilson [13], which has been previously solved by Montserrat 
[11] and later by Zhang and Lin [14]. Applying Sachs's "coefficients theorem 
for digraphs" [4], we derive some new properties regarding the relationship 
between the number of cycles of certain length in G and LG . 
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3 Adjacency matrices of a digraph and its line di­
graph 

We begin by defining two matrices related to G, which play a fundamental 
role throughout this paper. 

Definition 3.1 Let G denote a digraph with vertices V(G) = {v\, V2, • • •, vn} 
and edges E(G) = {e\,e<z-, • • • >em}-

1. Incidence matrix of heads ofG, H = H(G), is thenxm matrix defined 
by 

H ={ 1' ^ej = (Ui'~) ; 

*•* \ 0, otherwise. 

2. Incidence matrix of tails of G, T = T[G), is the nxm matrix defined 
by 

lJ \ 0, otherwise. 

Notice that H — T is the standard (0,1, —l)-incidence matrix of G [4]. Be­
sides, if ej = (vr, vs) then vr is the head of the arc ej and vs is its tail. This 
means Hrj = 1 and Hy = 0 for any k ^ r; also Tsj = 1 and Tjy = 0 for any 
k^s. 

The incidence matrices H(G) and T(G) and the adjacency matrices A{G) 
and A{LG) are related in the following way. 

Lemma 3.1 Let A{G) and A(LG) be the adjacency matrices ofG andLG, 
respectively. Let H and T be the incidence matrices of head and tails of G, 
respectively. Then, 

1. HTt = A(G). 

2. T*# = A(LG). 

Proof. 1. If A(G)ij = 1 then G contains an edge e; = (yi,Vj), which 
means that Hu — Tji — 1, and H^Tj^ — 0 for any k ^ I, so (HT^ij — 1. 
If A(G)ij = 0, there is no edge (vi,Vj), and hence, HikTjk = 0. Thus, 
(HT^ij = 0. 2. If A{LG)ij = 1, the edge ej is adjacent to ej in G through 
a common vertex, let us say vi, which implies that Tu = H\j — 1, and 
TkiHkj = 0 for any k ^ I. Then, (T*.ff)y = 1. Moreover, A(LG)u = 0 
means that the edge ej is not adjacent to ej in G, so (T*iJ)jj = 0 . • 
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We recall next a result by Flanders [5] about the relationship between 
AB and BA for arbitrary matrices A and B, later proved by Bernau and 
Abian [3] and Johnson and Schreiner [10]. 

Let C and D be n x n and mxm complex matrices, respectively. Then 
C may be written as AB while D is written as BA if and only if (i) the 
Jordan structure associated with nonzero eigenvalues is identical in C and 
D and (ii) if n\ > n-i > . . . • • • are the sizes of elementary Jordan matrices 
associated with 0 in C while mi > m^ > . . . • • • are the corresponding in D, 
then \rii — mi\ <1 for all i. 

In addition, when studying the relation between the characteristic poly­
nomials PAB(X) and PBA{%), Horn and C.R. Johnson [8] proved that 

AB 0 \ ( I A \ _ { I A\( 0 0 \ 
B 0j\0 I ) ~ \ 0 I ) \ B B A J 

from which it immediately follows that the Jordan structures associated with 
the nonzero eigenvalues of AB and BA are the same. 

The next result is a consequence of Flanders's theorem and Lemma 3.1. 

Corollary 3.1 Let A(G) and A(LG) be the adjacency matrices of a digraph 
G on n vertices and size m, and its line digraph LG, respectively. 

1. The matrices A{G) and A(LG) have the same nonzero eigenvalues, 
counting their multiplicities. Moreover, their eigenvalue sets differ 
in \m — n\ zeros and the following relations hold for characteristic 
polynomials and algebraic multiplicities of 0 

xnpLG(x) = xmpG(x) 

mA(LG)(Q) =m-n + mA{G) (0) 

2. For each A ^ 0 eigenvalue of A(G) and A(LG) the Jordan block matrix 
associated with X is the same in the Jordan normal form of both, A(G) 
andA(LG). 

3. The sizes of the corresponding elementary Jordan matrices associated 
with 0 in A(G) and A(LG) differ at most in one unit. • 
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The relationship obtained in the above Corollary between characteristic 
polynomials, together with the information they provide about the cycles 
and their lengths, permits us to obtain the following relations. 

A linear directed graph is a digraph in which each in-degree and each 
out-degree is equal to 1, i.e., it consists of non-intersecting cycles. 

The following result called the "coefficients theorem for digraphs" was 
given by Sachs [4] and later by others authors. If £ ; denotes the set of all 
linear directed subgraphs L of G with exactly i vertices, c(L) denotes the 
number of components of L, and PG(X) = xn + a\xn~1 + ... + an is the 
characteristic polynomial of G, it has been observed [4] that 

ai= £ ( - l ) c ( L ) ( * = l , 2 , . . . , n ) (2) 
Led 

Theorem 3.1 [4] Let G be a digraph with girth g and characteristic poly­
nomial PG{X) = xn + aixn~l + ... + an. Then, if i < min{2p — 1,n), the 
number of cycles of length i contained in G is equal to —ai, and g is equal 
to the smallest index i for which a, ^ 0. • 

As a consequence, using Corollary 3.1 we obtain the following results in 
relation to the number of cycles in line digraphs. 

Corollary 3.2 Let G be a weakly connected digraph of order n and girt g, 
with the characteristic polynomial PG(X) = xn + a\xn~l + . . . + an. 

1. For i < min{2g — l ,n} the number of cycles of length i contained in 
LG is equal to —ai, that is, the number of cycles of length i contained 
in G and in LG coincides. 

2. If ag = — 1 then for i < min{2<7,n} the number of cycles of length i 
contained in G is equal to —a{, and also this number represents the 
number of cycles of length i contained in LG. 

Proof. The result is obvious if G is acyclic. If G has cycles and its size is m 
then m> n, because G is weakly connected. So, 1. is a direct consequence 
of Theorem 3.1 and of Corollary 3.1 as PLG(X) — xm~npG{x). To proved., 
notice that if ag — —1, the digraph G has only one cycle of length g. Hence, 
each linear directed subgraph of G with i vertices, i < 2g, is necessarily a 
cycle, since there are not two cycles with length g. Prom result (2) it follows 
that ai = YliLeCii-l)c^ = YJC &G(~-0 (* — ^ ) - Thus, —a; is the number 
of cycles of length i contained in G and hence in LG. • 
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Theorem 3.2 Let G be a strongly connected digraph which is not a cycle 
with order n and size m, and such that S+(u) = 8~(u) for each vertex u. 
Then LG can be partitioned into an even number of disjoint cycles. Farther-
more, the number of those partitions is at least the number of Hamiltonian 
cycles of LG. 

Proof. Since G is strongly connected, m > n. In fact, m > n since G is 
not a cycle. If the out-degree of every vertex u equals its in-degree, then 
G must be Eulerian and hence, LG is Hamiltonian. Then, we can consider 
a cycle of length m in LG, which contributes a —1 to the coefficient am of 
the characteristic polynomial. Since PLG(X) = xm~npG(x) implies am — 0, 
there must exist a linear directed subgraph L € Cm of m vertices such that 
(—1)C(L) = 1. This is equivalent to say that L consists of an even number 
of disjoint cycles, and hence, the result holds. Furthermore, the number of 
partitions into an even number of disjoint cycles coincides with the number 
of partitions into an odd number of disjoint cycles because am = 0. Thus, 
the number of partitions into an even number of disjoint cycles is at least 
the number of Hamiltonian cycles of LG. • 

4 The Jordan Normal Form of a digraph and its 
line digraph 

^From Corollary 3.1, the Jordan block matrices associated with nonzero 
eigenvalues of A{G) and A(LG) coincide. Moreover, we know that the sizes 
of the elementary Jordan blocks associated with 0 in A(G) and A(LG) differ 
at most in one unit. In order to obtain a complete description of the Jordan 
normal form of A(LG) from A(G), we need to study the sizes of the elemen­
tary Jordan matrices associated with the eigenvalue zero. In this section we 
find the exact relation between these nilpotent Jordan blocks. 

Lemma 4.1 Let G be a digraph with vertex set V(G) = {t>i, v^,..., vn}. Let 
T, H be the incidence matrices of G, and a and (3 the number of sources 
and sinks of G, respectively. Then, 

1. TTt = Diag(5-(v1),6-(v2),...,5-(vn)). 

2. IM* = Diag(5+(v1),6+(v2),...,6+{vn)). 

3. rank(T) — n — a, rank(H) = n — /?. 
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Proof. Note that (TTf)ij = 0 whenever i ^ j , since if e^ = ( - ,Vi) then 
Tik = 1 a n d Tjk = 0. Besides, (TT*)jj = S~(vi). Analogously can be proved 
the result for HHf. Consider now, for instance, that {v\,V2,.. • ,va} is the 
set of sources of G. Then, the rows v\,V2,... ,va of T are zero, and the 
other rows define an orthogonal set of non-zero vectors. Therefore these 
n — a rows are linearly independent, so rank(T) = n — a <m. Analogously, 
can be proved that rank(H) = n — /? <m. • 

Notice that if n and m are the order and size of a digraph G with 
positive minimum degree, it has to be m > n, since m = YlveViG) $+(v) = 

J2veV(G) $~(v)- I n addition, if m = n, every vertex v has S+(v) = 1, and 
from the above Lemma, H is an identity matrix. In this case, A(LG) = 
flr*^4(G)iJ, which implies that the Jordan normal forms of G and LG are 
the same. In fact, this result was noted by Harary and Norman [9], namely 
that a weakly connected digraph is isomorphic to its line digraph if and only 
if each vertex has in-degree 1 or each vertex has out-degree 1. 

As a first consequence of the above Lemma we obtain a sufficient condi­
tion for diagonalizing both Jordan block matrices associated with zero for 
.4(G) and A(LG). 

Theorem 4.1 Let G be a digraph with a sources and ft sinks. Ifm^Q^(0) = 
max{a,/?}, then dimKerA(G) = rnA(G)(ty and dimKerA(LG) = m^iG)(0)-

Proof. By Lemma 4.1, rank(A(G)), rank(A(LG)) < min{rank(H), rank(T)} = 
min{n—(3,n—a} = n—max{a,/3}. Besides, dimKerA(G) = n—rank(A(G)) 
so we obtain max{o;,/3} < dimKerA(G) < m^Q^(0). By hypothesis, 
mA(G)(ty = max{a:,/3} so dimKerA(G) = "1A(G)(0)- Also, by Lemma 
4.1,dim KerA(LG) = m — rank(A(LG)), so we have m — n + max{a;,(3} < 
d\mKerA(LG) < m^iQ^(0). By Corollary 3.1, ?TIA(LG)(0) — rn — n + 
mA(G)(0)) a n d it follows dimKerA(LG) = m^LG)^)- • 

Notice that when A(G) is a nonsingular matrix there are neither sources 
nor sinks in G and m> n. Hence, the condition of the above Theorem is 
directly satisfied and together with Corollary 3.1 we can readily obtain the 
following result. 

Corollary 4.1 Let G be a digraph on n vertices and size m, and assume 
that A(G) is nonsingular. Then, the Jordan normal form JA(G) °f A(G) 
and the Jordan normal form JA(LG) °f A(LG) are related as follows: 

Jw = ( A(G> 0 ) 
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where O is a square zero matrix of order m — n. • 

Thus, the general case which remains to be solved is when A(G) is a 
singular matrix. We start with the study of digraphs with minimum degree 
5 > 1. We distinguish two cases, depending on 8(G) positive or zero. 

4.1 Digraphs wi th posit ive minimum degree 

We deal with digraphs G with 6 > 1, so there are no sources and no sinks, 
i.e. a = /? = 0, and m > n. In the following we use a result by Probenius 
which states that if ABC exists, then 

rank(ABC) > rank(AB) + rank(BC) - rank(B). (3) 

If B is the identity matrix In, the above expression gives rank(AC) > 
rank(A) + rank(C) — n. 

First of all, we obtain the following lemma. 

Lemma 4.2 Let G be a digraph of order n and size m, with minimum degree 
5>1. Then, 

dim KerA(G) <m — n, and dim KerA(LG) — m — n 

Proof. Since A(G) = HT*, applying Probenius Theorem(3), rankA(G) > 
rank(H) + rank^T1) — m = In — m due to Lemma 4.1. The substitution 
of this bound for rankA(G) in dim KerA(G) = n — rankA(G) gives the 
first result. Furthermore, if 5 > 1, then KerT* = {0} because of Lemma 
4.1. Let U a nonzero vector of KerA(LG). Since T*HU = 0, then HU e 
KerT\ that is, HU = 0. Hence KerA(LG) = KerH, which implies that 
dim KerA(LG) — m-n. • 

Theorem 4.2 Let G be a digraph of order n and size m, with minimum 
degree 5 > 1, and let p > 0 any integer. Then, dim KerA(LG)p+1 = 
dim KerA(G)p + m-n. 

Proof. When p = 0, the result follows from Lemma 4.2. So assume that 
p > 1. Since A(LG)P+1 = TtA(GfH, we have that rankA(LGy+1 < 
rankA(G)P. That is, 

m - dimKerA{LG)p+1 <n- dim KerA(Gf. 
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On the other hand, from Lemma 4.1 with a — (3 = 0, and from expression 
(3) it follows that 

rankA(LG)P+1 = rank{TtA(G)PH) > rank(TtA(G)P)+rank(A(G)PH)-
rankA(G)p > 

rank(Tf) + rank A{Gf - n + rank A(G)P + rank(H) -n- rank A(G)P = 
n + rank A(G)P —n + n — n — rank A(G)P . Hence, 

m - dim KerA(LG)p+1 > n - dim KerA{G)p. 

These two inequalities complete the proof. • 

Now, in order to find the Jordan block associated with zero of A(LG) 
from that of A(G) when the minimum degree of G is <5 > 1, we need the 
formula (1) given in the Introduction to compute the number of elementary 
Jordan matrices of a given order. 

Theorem 4.3 Let G be a digraph of order n and size m, with minimum de­
gree 5 > 1. If A{G) is singular with JA(G)(®)

 as Jordan block associated with 
zero, then the Jordan block associated with zero for A(LG) can be written as 

( JA(G)(0) \ 

where JMQ\ (0) is obtained by increasing one unit the order of each of the 
elementary Jordan matrices in JA(G)(^)>

 an^ O = [0] is a square zero-matrix 
of order m — n — dim KerA(G). 

Proof. As 6 > 1, Lemma 4.2 allows us to assure that dim KerA(LG) = 
m — n. Notice that m> n, because otherwise, from Corollary 3.1 it follows 
that 0 = mA(LG)(^) = mA(G)(0) contradicting the hypothesis. Let us de­
note by Np(G) and Np(LG) the number of elementary Jordan matrices of 
order p associated with zero in the Jordan normal forms JA(G)

 a n d JA(LG) > 
respectively. Hence, by Theorem 4.2 we can write now for each integer p > 1 
that 

dim KerA(LG)p = dim KerA(G)P~1 + m-n. 

Property (1) enable us to compute Np(LG) for p > 1. First, when p = 1: 

Ni (LG) = 2 dim KerA{LG) - 0 - dim KerA(LG)2 = m - n - dim KerA{G) 

Notice that Ni(LG) > 0 by Lemma 4.2, and that this result is the respon­
sible for the square zero-matrix O. 
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Next, for any p > 2, 

Np(LG) = 2(dim KerA{G)P~1 +m-n)- (dim KerA(G)P~2 + m-n) 

-(dimKerA(G)P + m-n) 

= 2 dim Ker A^P-1 - dim KerA(G)P~2 - dim Ker A(G)P 

= JVP-i(G) 

So, for each elementary Jordan matrix of order p — 1 in JA(G) (0) there exists 

one elementary Jordan matrix of order p in JA(G)(0)J f° r every p > 2. • 

By applying recursively Corollary 4.1 or Theorem 4.3, and Corollary 3.1, 
the Jordan normal form of A(LkG) can be found from the Jordan normal 
form of A(G), where G is any digraph with 5 > 1, k > 1 is any integer, and 
LkG is the fc-iterated line digraph of G. For the case of digraphs G that are 
d-regular, an explicit formula can be given for the Jordan block associated 
with zero for A(LkG), which, as known, represents the only difference respect 
to the Jordan normal form of A(G). That formula is shown in the following 
Corollary, whose proof only involves simple calculations. 

Corollary 4.2 Let G be a d-regular digraph of order n, with d > 1. Let 
k > 1 be any integer, and LkG be the k-iterated line digraph of G. If for 
any integer q > 1, Nq(L

kG) and Nq(G) stand for the number of elemen­
tary Jordan matrices of order q associated with zero for A(LkG) and A(G) 
respectively, then for any integer p>l 

' n(d - lfdk~l-P ifp<k- 1; 

n{d - 1) - dim KerA(G) ifp = k; 

iVp_fe(G) ifp>k + l. u 

4.2 Digraphs wi th minimum degree zero 

If G is a digraph with minimum degree 8 = 0, it has sources and/or sinks. 
Note that every isolated vertex of G is a source and a sink at the same time. 
For the following study of the line digraph of a digraph G with S = 0, we 
will use a set of sources, S0, and a set of sinks, Si, that are disjoint, that is to 
say, each isolated vertex of G, if one exists, is chosen arbitrarily to belong to 
the set of sources or to the set of sinks, but not to both simultaneously. For 
instance, if we consider the isolated vertices as sources we will have l^ l = a, 
\Si\ = /? — 7, where 7 is the number of isolated vertices. 

Np(L
kG) = < 
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Definition 4.1 Let G be a digraph and let SQ C V(G) and Si C V(G) be the 
sets of sources and sinks of G, respectively, S0r\Si = 0. / / V(G) ^ SQ U Si, 
the reduced digraph of G, GR,is defined as GR = G — {S0 U Si}. 

Definition 4.2 Let G be a digraph and let S0 C V(G) and Si C V(G) be 
the sets of sources and sinks of G, respectively, S0C\ Si = 0. Let C0, Ci be 
two sets such that C0 fl Cj = 0, \CQ\ = \S0\, \C%\ = \Si\, and let f0, fi be two 
one-to-one maps from S0 onto Ca and from Si onto C^, respectively. The 
increase digraph of G,Gi = (V(GJ),E(GJ)), is defined as follows: 

V(GI) = V(G)UC0UCi 

E(Gj) = E(G) U [ (J ((x,f0(x)) U (f0(x),x))} U [ (J ((y,fi(y)) U (fi(y),y))} 
xsS0 y€Si 

This definition has been given for the most general case. If, for instance, 
G has no sinks or all its sinks are also sources, we can set S{ = 0, and then we 
will avoid using the set Cj and the map fi. Analogously if G has no sources 
or all its sources are also sinks. Finally, if S0 = Si = 0, then GR = GJ — G. 

Lemma 4.3 Let G be a digraph and let S0 C V(G) and Si C V(G) be 
the sets of sources and sinks of G, respectively, S0C\ Si = 0. Let G\ be the 
increase digraph ofG, with adjacency matrix A{Gj). IfV(G) ^ S0USi, then 
the Jordan blocks associated with zero for A(GR) and for A(Gi) coincide, 
where GR is the reduced digraph of G and A(GR) is its adjacency matrix. 

Proof. We start by setting \SQ\ = e, \S{\ = to. Let S0 = {a\,a2,..., ae} and 
Si = {b\, 62, . . . , bu} be the sets of sources and sinks of G. Let f0 : SQ —> C0 

and fi : Si —> Ci be the one-to-one maps defining the digraph Gj . Then, 
the vertex sets of G and Gj can be written as: 

V{G) = {a1,a2,...,ae,...,bi,b2,...,bul} 
V(Gl) = {fo(ae), /o(oe-l), • • •, fo(ai), ai, a2,. • •, a e , . . . , 61, b2,..., 6W, 

fi(bui),fi(bu>-i), • • •, fi(h)} 
This ordering of the vertices allows the following expression for A[Gi)\ 

I 
where Zq = 

integer p > 1 : 
u 

A{Gj) -

1 \ 

) 

/ Ze M N 
= 0 A(GR) U 

\ 0 0 z« 

, 2q x 2q matrix (< 
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/ {Zef M N \ 
Aidf = 0 A(GR)P U 

\ o o {zjf I 
As Ze and Zu are nonsingular, we obtain rankA(Gi)p = rankA(Gji)p + 

2(e + u>), and so: 

dim KerA{Gif = dim KerA(GR)p, for each integer p > 1. 

Lemma 4.4 Let G be a digraph and Gi be its increase digraph. If A(LG) 
and A(LGT) are the adjacency matrices of the line digraphs of G and of Gj 
respectively, then the Jordan blocks associated with zero for A(LG) and for 
A(LGi) coincide. 

Proof. Let S0 = {a\,a2,... ,ae} and Si = {bi,l>2,.. • ,bu} be the sets of 
sources and sinks of G, S0 D Si = 0. Let f0'-S0-* C0 and fi : Si —* Ci be 
the one-to-one maps defining the digraph Gj. Let u+(S0) and u~(Si) be 
the subsets of arcs: 

oo+(S0) = {e€ E(G) : e = (a,x), a e S0}- uj-(Si) = {e € E(G) : e = 
(x,b),beSi}. 

Hence, ui+(S0), co~(Si) are subsets of vertices of LG and of LGj. Notice 
that in LGj, each vertex f0(o,)a, a 6 S0, is adjacent to any vertex of iv+(S0), 
and also each vertex bfi(b), b E Si, is adjacent from any vertex of w_(5j). 
Now, assuming a natural ordering of the vertices from left to right, the 
vertex sets of the digraphs LG and LGj can be written as 

V{LG) = LU+(S0) U (E(G) \ [u+(S0)\Ju-(Si)})Uu;-{Si) 
V{LGj) = [jaeSo{fo(a)a, af0(a)} U V(LG) [jbeSi{fi(b)b, &/<(&)}, 

Thus, the following expression for A{LGj) holds 

/ Ye M N \ 
A{Wj) = 0 A{LG) U 

\ 0 0 Yw ) 
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/ 0 1 \ 
1 0 

where Yq = , 2qx2q matrix (q = e, LJ). Then, for any 

0 1 

V 1 0 / 
integer p > 1 : 

/ (Y€)
p M N 

AiLdf = 0 A(LG)P U 
\ o o (Ywy 

As Ye and Yw are nonsingular, we obtain rank A(LGi)p — rank A(LG)P + 
2(e + u), and so: 

dim K er A(LG i)p = dim KerA(LG)p, for each integer p > 1. • 

Since Gj has neither sources nor sinks, we have that S(Gj) > 1. So, 
using the above lemma and Lemma 4.2, we can characterize those digraphs 
whose line digraphs have a diagonal Jordan block associated with zero. 

Corollary 4.3 A digraph G with a sources, (1 sinks and 7 isolated vertices 
satisfies m^Q^(0) > a+ (3 — 7, and also dimKerA(LG) = m^iG)(^) if and 
only if mA{a) (0) = a + f3 - 7. 

Proof. Notice that the order of Gj is n+a + /3 — 7, and its size is m+2(a + 
(3 - 7). From Lemma 4.4 follows that dim KerA(LG) — dim KerA(LGi) = 
m — n + a + (3 — 7, applying Lemma 4.2 to Gj since S(Gj) > 1. Prom 
Corollary 3.1 mA^LG^(0) = m — n + mA(G)(0), so the results follow easily. 

If G is a digraph such that V(G) — S0 U Si, that is, n = a + [3 — 7 then 
mA{G)(ty = « + /? — 7, a sa consequence of Corollary 4.3 and n > TIA(G)(0)-

Furthermore, dimKerA(LG) = mA^LG^(0) = m, by means of Corollary 3.1, 
that is, A(LG) = [0]. So, the general case which remains to be solved is 
when V(G) ^S0USi. 

The Jordan block associated with zero for A(LG) can be obtained di­
rectly from that for A(GT) with the help of Corollary 4.1 and Theorem 4.3. 
But the order of the matrix A(Gj) is greater than the order of A(G), and 
the problem of predicting the Jordan block associated with zero for A(LG) 
when 5(G) = 0 seems to be computationally more complex that in the case 
6(G) > 1. In fact, this is the main reason for introducing the digraph GR. 
Now, the following theorem is straightforward. 
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Theorem 4.4 Let G be a digraph of order n and size m with a sources, (3 
sinks and 7 isolated vertices, with n > a + (3 — 7. Let S0 C V(G) and Si C 
V(G) be the sets of sources and sinks of G, respectively, S0C\Si = 0. Being 
•7A(LG)(0) the Jordan block associated with zero for the adjacency matrix 
of the line digraph of G, and A(GR) the adjacency matrix of its reduced 
digraph, the following results hold: 

1. If A(GR) is nonsingular, JA(LG)(Q) *S a square zero matrix of order 
m — n + a + /3 — 7. 

2. If A(GR) is singular with JA(GR)(®)
 as Jordan block associated with 

zero, then 

JA{LG)(0) = ( J " G * > ( 0 )
 0 ) , 

where JA(GR)(®) *S the Jordan block whose elementary matrices re­
sult by increasing one unit the order of each of the elementary Jordan 
matrices in JA(GR)(^)>

 and O = [0] is a square zero matrix of order 
m — n + a + /3 — 7 — dim KerA(GR). 

Proof. Notice that V(G) ^ S0 U St because n > a + (3 - 7. If Gj is 
the increase digraph of G, Lemma 4.4 states that JA(LG) (0) is equal to the 
Jordan block associated with zero for A{LGj). 

If A{GR) is nonsingular, from Lemma 4.3 A(Gj) is also nonsingular, 
so the Jordan block associated with zero for A(LGj) is diagonal of order 
m — n + a + /? — 7 by applying Corollary 4.1. 

If A(GR) is singular, its Jordan block associated with zero is the same as 
for A(Gj), due to Lemma 4.3. Theorem 4.3 gives the result for the Jordan 
block associated with zero for A(LGi), that is to say, it gives JA(LG)(®)-

• 

It must be emphasized, that from a computational complexity point of 
view, no real difference exists between digraphs G with 5(G) > 1 or with 
6(G) = 0 in order to predict the Jordan normal form of A(LG) from the 
Jordan blocks for G and/or GR, except for the fact that the order of A(G) 
is greater than the order of the adjacency matrix of the digraph GR when 
GR ^ G. Actually, the Jordan blocks associated with nonzero eigenvalues 
for A(G) and the Jordan block associated with zero for A(GR) are assumed 
to be known in both cases, since GR = G when 6(G) > 1 and GR / G when 
6(G) = 0. 
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