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A set S of vertices is defined to be a power dominating
set (PDS) of a graph G if every vertex and every edge in
G can be monitored by the set S according to a set of
rules for power system monitoring. The minimum cardi-
nality of a PDS of G is its power domination number. In
this article, we find upper bounds for the power domina-
tion number of some families of Cartesian products of
graphs: the cylinders Pn�Cm for integers n ≥ 2, m ≥ 3,
and the tori Cn�Cm for integers n, m ≥ 3. We apply similar
techniques to present upper bounds for the power dom-
ination number of generalized Petersen graphs P(m, k ).
We prove those upper bounds provide the exact values of
the power domination numbers if the integers m, n, and k
satisfy some given relations. © 2010 Wiley Periodicals, Inc.
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1. INTRODUCTION

Electric power companies need to monitor the state of
their networks continually. The state of an electrical power
network is defined by a set of variables: the voltage magni-
tude at loads and the machine phase angle at generators [1].
One method of monitoring these variables is to place phase
measurement units (PMUs) at selected locations in the sys-
tem. Because of the high cost of a PMU, it is important to
minimize the number of PMUs needed to monitor the entire
system.

This problem was first studied in terms of graphs by
Haynes et al. in 2002 [7]. Indeed, an electrical power network
can be modeled by a graph where the vertices represent the
electrical nodes and the edges are associated with the trans-
mission lines joining two electrical nodes. In this model, the
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power domination problem in graphs consists of finding a
minimal set of vertices from which the entire graph can be
observed according to certain rules. In terms of the physical
network, those vertices will provide the locations where the
PMUs should be placed in order to monitor the entire graph
at a minimal cost.

A PMU measures the voltage and phase angle at the ver-
tex where it is located, but also at other vertices or edges,
according to the following propagation rules:

1. Any vertex that is incident to an observed edge is
observed.

2. Any edge joining two observed vertices is observed.
3. If a vertex is incident to a total of k edges, k > 1, and

if k − 1 of these edges are observed, then all k of these
edges are observed.

Note that we followed the rules as presented in Ref. [7]. In
Ref. [3] the authors present the propagation rules in a different
way, that ultimately, as observed in Ref. [4], is equivalent to
ours.

Algorithmically, given a graph G = (V , E) and set of
vertices P ⊂ V , we are going to construct a set of vertices
C that can be observed from P and a set of edges F that are
observed by P [4].

1. Initialize C = P and F = {e ∈ E : e is incident to a
vertex in P}.

2. Add to C any vertex in V − C, which is incident to an
edge in F.

3. Add to F any edge e in E − F, which satisfies one of the
following conditions:
(a) both end-vertices of e are in C.
(b) e is incident to a vertex v of degree greater than

one, for which all the other edges incident to v
are already in F.

4. If steps 2 and 3 fail to locate any new edges or vertices
for inclusion, stop. Otherwise, go to step 2.

The final state of the set C determines if P is a power
dominating set (PDS). The power domination problem for
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a given graph G consists of finding a minimal PDS for G.
The cardinality of a minimal PDS in G is called the power
domination number of G, and it is denoted γP(G). A PDS of
G with cardinality γP(G) will be referred to as a γP-set.

Given a graph G and a positive integer k, the power dom-
ination decision problem consists of deciding if the graph
has a PDS of size at most k. The power domination decision
problem has been proven to be NP-complete [7], even when
reduced to certain classes of graphs, such as bipartite graphs
or chordal graphs [7], or even split graphs [9], a subclass of
chordal graphs. However, Liao and Lee [9] presented a linear
time algorithm for solving this problem on interval graphs, if
the interval ordering of the graph is provided. If the interval
order is not given, they provided a quasi linear algorithm and
proved that it is asymptotically optimal. Other efficient algo-
rithms have been presented for trees [8] and more generally,
for graphs with bounded treewidth [5]. On block graphs [12]
and claw-free graphs [13], there are upper bounds given for
the power domination number.

2. DEFINITIONS AND NOTATION

A graph G = (V , E) is a pair formed by a nonempty set of
vertices V = V(G) and a set of edges E = E(G) that contains
unordered pairs of vertices. For any vertex v ∈ V , the open
neighborhood of v is the set N(v) = {u ∈ V : uv ∈ E}.
The closed neighborhood of v is the set N[v] = N(v) ∪ {v}.
Similarly, for any set of vertices S, N(S) = ∪v∈SN(v) and
N[S] = ∪v∈SN[v]. The degree of a vertex v, denoted deg(v),
is the cardinality of the set N(v). The maximum and minimum
degrees of a graph are defined as �(G) = max{deg(v) : v ∈
V} and δ(G) = min{deg(v) : v ∈ V}, respectively. Let us
denote the path of order n as Pn with vertex set V(Pn) = {xi :
0 ≤ i ≤ n − 1} and the cycle of order m as Cm with vertex
set V(Cm) = {yj : 0 ≤ j ≤ m − 1}.

The graphs we study in this article are cylinders and tori.
Both, cylinders and tori, can be defined by means of the Carte-
sian product of graphs, so we recall its definition. Given
two graphs G1 = (V1, E1) and G2 = (V2, E2), the Carte-
sian product of G1 and G2 is the graph G1�G2 whose set
of vertices is the Cartesian product of the sets V1 and V2, so
V(G1�G2) = V1 × V2. Two vertices of G1�G2, say (v1, v2)

and (u1, u2), are adjacent if and only if v1 = u1 and v2 is adja-
cent with u2 in G2, or alternatively, if v1 is adjacent with u1 in
G1 and v2 = u2. For particular pairs of graphs G1 and G2, the
Cartesian product provides well-known families of graphs.
For example, the n × m grid can be obtained as the Cartesian
product Pn�Pm, where Pn and Pm, respectively, denote the
paths with n and m vertices. Analogously, the n × m cylin-
der is the Cartesian product Pn�Cm, where Pn denotes, as
above, the path on n vertices, and Cm stands for the cycle
on m vertices. The n × m torus is the Cartesian product of
two cycles, say Cn and Cm, respectively, having n and m
vertices.

In Ref. [4], the authors found a closed formula for γP(G)

when G = Pn�Pm. We recall their main result next.

FIG. 1. The spiked cycle SC6.

Theorem ([4]). If G is an n × m grid graph, m ≥ n ≥ 1
then

γP(G) =
{

� n+1
4 � if m ≡ 4 mod 8

� n
4� otherwise

.

■

In Ref. [3], the number γP(G) was calculated for graphs
G arising from the strong, direct and lexicographic product
of paths.

In this article, we partially extend the result in Ref. [4] for
Pn�Pm to the cylinders Pn�Cm for integers n ≥ 2, m ≥ 3,
and the tori Cn�Cm for integers n, m ≥ 3.

We refer the reader to Refs. [2] and [6] for basic graph
theory terminology and concepts.

3. CYLINDERS

In this section, we give the power domination number
for some subgraphs of cylinders. We then proceed by giving
an upper bound for the power domination number of cylin-
ders using the found power domination numbers. Before we
begin, we first present the following lemma that was shown
in Ref. [7] and then recall the definition of a spiked cycle.

Lemma ([7]). If G is a graph with �(G) ≥ 3, then G
contains a γP(G)-set such that deg(v) ≥ 3 for each vertex in
the γP(G)-set.

The spiked cycle with 2m vertices, denoted as SCm

(Fig. 1), is the graph with vertex set {v0, . . . , vm−1} ∪
{u0, . . . , um−1} and edges vivi+1 and viui, for all i =
0, . . . , m − 1 with the subscript addition modulo m. Note
that the vertices {v0, . . . , vm−1} are cyclically connected by
the edges vivi+1 while the edges viui add a spoke on each
vertex of the cycle.

Lemma 3.1. For any positive integer m, the power domi-
nation number of SCm is γP(SCm) = �m

3 �.

Proof. (≤) Let S = {vi : i ≡ 0 mod 3}. Then, S is a
PDS for SCm with |S| = �m

3 �. Thus, γP[SCm] ≤ �m
3 �.

(≥) Let S be a γP-set for SCm. As �[SCm] = 3, we
can assume that deg(v) = 3, for all v ∈ S. In particular,
every vertex in S lies on the cycle of SCm. Now, suppose that
γP[SCm] < �m

3 �. Then, there is a vertex vi ∈ SCm such that
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FIG. 2. The spiked band SBn.

d(vi, N[S]) = 1. So, there is a vertex vi /∈ N[S]. This ver-
tex will be observed only if at least one edge incident to it
is observed. The edge viui cannot be observed unless vivi+1

and vi−1vi are observed. The edge vivi+1 is not observed since
ui+1vi+1 is not observed (and vice versa). The edge vivi−1 is
not observed since ui−1vi−1 is not observed (and vice versa).
Hence, S is not a PDS. This completes the proof. ■

Notice that for the cylinder Pn�Cm, if the set of vertices
{(x0, yj) : 0 ≤ j ≤ m − 1} is observed, then Pn�Cm is
observed. To see this, consider the vertex v = (x0, yk) and
note that deg(v) = 3. As the set of vertices {(x0, yj) : 0 ≤ j ≤
m − 1} is observed, then (x0, yk−1), (x0, yk), and (x0, yk+1)

are observed, thus also (x1, yk) is observed. It follows that the
set of vertices {(x1, yj) : 0 ≤ j ≤ m − 1} is observed. We can
repeat this argument until the cylinder Pn�Cm is observed.

Lemma 3.2. For any positive integers n and m,
γP(Pn�Cm) ≤ γP(SCm).

Proof. Define the set S by S = {(x0, yi) : i ≡ 0 mod 3}
for i ≤ m−1. Then, every vertex in the set {(x0, yj) : 0 ≤ j ≤
m − 1} is observed and hence, the set S observes the graph
Pn�Cm. ■

Given a positive integer n, the spiked band SBn (Fig. 2) has
a vertex set that can be partitioned into the union of four sets as
it follows: {a0, . . . , an−1}∪ {b0, . . . , bn−1}∪ {c0, . . . , cn−1}∪
{d0, . . . , dn−1}. Its edges are of two different types. The hori-
zontal edges are aibi, bici, and cidi for all i = 0, . . . , n−1. The
vertical edges are bibi+1 and cici+1 for all i = 0, 1, . . . , n−1.

In the illustrations throughout the remainder of this arti-
cle, transparent vertices will represent vertices that are not
observed, black vertices will represent observed vertices, and
circled black vertices will represent the vertices in a PDS of
the graph.

Lemma 3.3. For any positive integer n, the power domina-
tion number of SBn is γP(SBn) = � n+1

2 �.

Proof. (≤) Define the set S as S = {bi : i ≡ 0 mod 4} ∪
{ci : i ≡ 2 mod 4} if n is even and S = {bi : i ≡ 0 mod 4} ∪
{ci : i ≡ 2 mod 4} ∪ {bn−1} if n is odd for i ≤ n − 1 and
j ≤ n − 1. Then, S is a PDS with the desired cardinality.

(≥) Note that γP(SB2) > 1. Also, the construction given
above for a PDS of SB2 gives γP(SB2) ≤ 2. Thus, γP(SB2) =
2 and so we assume that n ≥ 3. Suppose γP(SBn) < � n+1

2 �.
As �(SBn) = 4, there is a γP-set, say S, such that deg(v) ≥ 3
for all v ∈ S. That is, each vertex in S is either bi or ci for some
i = 0, 1, . . . , n−1. As we assume that γP(SBn) < � n+1

2 � and
each vertex in S is either bi or ci for some i = 0, 1, . . . , n −1,
then there exists some bk or some ck such that bk /∈ N[S] or
ck /∈ N[S]. Assume without loss of generality that bk /∈ N[S].
Either deg(bk) = 3 or deg(bk) = 4.

Case 1. deg(bk) = 3. Then, k = 0 or k = n − 1. Assume
k = 0. Then, b1, c0 /∈ S and so a1, d0 /∈ N[S]. As deg(b1) = 4
deg(c0) = 3 and since at most two neighbors of b1 are
observed and at most one neighbor of c0 is observed, prop-
agation does not give that b0 is observed. Hence, SBn is not
observed and so γP(SBn) ≥ � n+1

2 � when deg(bk) = 3. The
proof is similar for k = n − 1.

Case 2. deg(bk) = 4. As bk /∈ N[S], then bk−1, bk+1, ck /∈ S
and hence ak−1, ak+1, dk /∈ N[S]. Note that deg(bk−1) =
deg(bk+1) = deg(ck) = 4. Then, for each of bk−1, bk+1, ck ,
there exists two neighbors that are not observed and so propa-
gation does not observe bk . It follows that SBn is not observed
and so γP(SBn) ≥ � n+1

2 � when deg(bk) = 4.
The desired lower bound follows from Case 1 and Case 2

and equality follows for γP(SBn). ■

Figure 3 illustrates Case 1 and Case 2 of the above proof.

Lemma 3.4. For any positive integers n and m,
γP(Pn�Cm) ≤ γP(SBn).

Proof. Define the set S as S = {(x0, yi) : i ≡ 0 mod 4}∪
{(x0, yi) : i ≡ 2 mod 4} if n is even and define S as
S = {(x0, yi) : i ≡ 0 mod 4} ∪ {(x0, yi) : i ≡ 2 mod 4} ∪
{(x0, yn−1)} if n is odd for i ≤ n − 1 and j ≤ n − 1. Then, S
is a PDS with |S| = � n+1

2 �. ■

Consolidating Lemma 3.2 and Lemma 3.4 gives

Lemma 3.5. For any positive integers n and m, the
power dominating number of Pn�Cm is bounded above by
γP(Pn�Cm) ≤ min{γP(SBn), γP(SCm)}. ■

We now present two upper bounds for the power domina-
tion number of cylinders.

Lemma 3.6. The power domination number for Pn�Cm is
bounded above by γP(Pn�Cm) ≤ ⌈m+1

4

⌉
.
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FIG. 3. Proof of Lemma 3.3. (a) Case 1: deg(b0) = 3. (b) Case 2: deg(bk) = 4.

Proof. Define the set S by S = {(xk , y0) : k ≤ n −
1, k ≡ 0 mod 4} ∪ {(xl, y1) : l ≤ n − 1, l ≡ 2 mod 4} for
k, l ≤ �m−1

2 �. Then, S observes the set of vertices {(x0, yi) :
0 ≤ i ≤ m − 1} and so S is a PDS with |S| = �m+1

4 �. ■

Figure 4 illustrates the PDS described in the above proof
for the graph Pn�C7 for n ≥ 4.

As mentioned earlier, but in a more general manner, when
the set of vertices {(x0, yj) : 0 ≤ j ≤ 7} is observed, then
Pn�C7 is observed. For this reason, we only leave a lower
bound on n, namely n ≥ 4. The following upper bound was
shown in the proof for Lemma 3.4.

Lemma 3.7. The power domination number for G =
Pn�Cm is bounded above by γP(G) ≤ ⌈ n+1

2

⌉
. ■

Consolidating Lemma 3.7 and Lemma 3.8 gives the
following result:

Theorem 3.8. The power domination number for the graph
Pn�Cm is γP(Pn�Cm) ≤ min{�m+1

4 �, � n+1
2 �}. ■

Note that Theorem 3.9 implies that γP(Pn�Cm) = 1 if
m ≤ 3 or n = 1, so the bound is attained for the infinite
family of graphs Pn�C3. We now use Theorem 3.9 to deter-
mine the power domination numbers for some other classes
of cylinders. First realize that for n ≥ 2 and m ≥ 4, the
power domination number of Pn�Cm is bounded below by
γP(Pn�Cm) ≥ 2.

Corollary 3.9. The power domination number for the graph
Pn�Cm is γP(Pn�Cm) = 2 if n = 2, 3 and m ≥ 4, or if n ≥ 2
and 4 ≤ m ≤ 7. ■

4. TORI

As the torus Cn�Cm is isomorphic to Cm�Cn, we assume
n ≤ m for tori.

Lemma 4.1. In the graph Cn�Cm, if the set of vertices
{(xi, yj) : 0 ≤ j ≤ n − 1} ∪ {(xi+1, yj) : 0 ≤ j ≤ n − 1} is
observed for some 0 ≤ i ≤ m − 2, then the torus Cn�Cm is
observed.

Proof. Let the set of vertices {(xi, yj) : 0 ≤ j ≤ n − 1}∪
{(xi+1, yj) : 0 ≤ j ≤ n − 1} be observed for some 0 ≤ i ≤
m − 2. As deg(xi+1, yj) = 4 for all j and the set of vertices
N[(xi+1, yj)] \ {(xi+2, yj)} is observed for all j, it follows that
the vertex (xi+2, yj) is observed for all 0 ≤ j ≤ n − 1. Once
(xk , yj) is observed for all j and for some i + 2 ≤ k, we can
follow a similar argument to show (xk+1, yj) is observed. In
particular, we can repeat the argument until the torus Cn�Cm

is observed. ■

Theorem 4.2. The power domination number for the graph
G = Cn�Cm, n ≤ m, is

γP(G) ≤
{� n

2� if n ≡ 2 mod 4

� n+1
2 � otherwise

.

Proof. To show the upper bound above, we construct a
PDS S that observes the vertices {(xi, yj) : 0 ≤ j ≤ n − 1} ∪
{(xi+1, yj) : 0 ≤ j ≤ n − 1}. Define S as S = {(xi, yk) :
k ≡ 1 mod 4} ∪ {(xi+1, yl) : l ≡ 3 mod 4} for k, l ≤ n − 1
and if n ≡ 2 mod 4, then define S as S = {(xi, yk) : k ≡
1 mod 4} ∪ {(xi+1, yl) : l ≡ 3 mod 4} ∪ {(xi+1, y1)}. Then, S
is a PDS with |S| = � n+1

2 � if n ≡ 2 mod 4 and |S| = � n
2�

otherwise. ■

It is easy to show that γP(C3�Cm) > 1 and as a conse-
quence of Theorem 4.2, γP(C3�Pm) = 2. Therefore, there is
an infinite family of graphs for which these bounds provide
the exact value of the power domination number.
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FIG. 4. Proof of Lemma 3.6. (a) Initial set S. (b) Closed neighborhood of
S. (c) First propagation. (d) Second propagation. (e) (x0, yi) is observed. (f)
Propagation continues.

5. GENERALIZED PETERSEN GRAPHS

We begin by recalling the definition of a generalized
Petersen graph. For m ≥ 3, m > k ≥ 1, and gcd(m, k) = 1,
the generalized Petersen graph P(m, k) is the graph with ver-
tex set {v0, v1, . . . , vm−1} ∪ {w0, w1, . . . , wm−1} and edges
{viwi}, {vivi+1}, {wiwi+k} for every i = 0, 1, . . . , m − 1,
where the subscript sum is taken modulo m. The vertices
{v0, . . . , vm−1} will be referred to as outer vertices and
the vertices {w0, . . . , wm−1} will be referred to as inner
vertices. The viwi edges will be referred to as spokes.
Figure 5 shows an example of a generalized Petersen
graph.

We first present an upper bound on the power domination
number for the generalized Petersen graph P(m, k).

Lemma 5.1. The power domination number for the gener-
alized Petersen graph P(m, k) satisfies γP(P(m, k)) ≤ k.

Proof. Define the set S by S = {w0, w1, . . . , wk−1}.
We claim that S is a PDS. To see this, first notice that
N[S] = {wm−k , . . . , w0, . . . , w2k−1} ∪ {v0, v1, . . . , vk−1}.
Now, N(vk−1) = {vk−2, wk−1, vk} and since wk−2, vk−1,
and wk−1 are already dominated, then vk is also dom-
inated. Repeating the same argument successively with
vk , vk+1, . . . , v2k−2 we can conclude that the vertices
vk+1, . . . , v2k−1 are also dominated. Analogously, if the pro-
cess starts with v0 instead of vk−1 and continues with the ver-
tices vm, vm−1, . . . , vm−k−1, we conclude that vk+1, . . . , vm−k

are also dominated. Thus, the set of dominated vertices so
far is {wm−k , . . . , w0, . . . , w2k−1}∪{vm−k , . . . , v0, . . . , v2k−1}.
If m ≤ 3k, then P(m, k) is already dominated. Otherwise,
we can increase the size of the dominated set by applying
the following argument: N(v2k−1) = {v2k−2, w2k−1, v2k} but
w2k−1, v2k−2 and v2k−1 are already dominated, so v2k is also
dominated. Besides, N(wk) = {vk , w0, w2k} but wk , vk , and
w0 are already dominated, so w2k is also dominated. Now,
the set of dominated vertices is {wm−k , . . . , w0, . . . , w2k} ∪
{vm−k , . . . , v0, . . . , v2k}.

Repeating the previous process we can add a vertex of
type wi and a vertex of type vi in each step until the set of
dominated vertices becomes {wm−k , . . . , w0, . . . , wm−k−1} ∪
{vm−k , . . . , v0, . . . , vm−k−1}. That is, until all vertices are
dominated. ■

Figure 6 illustrates the idea used in the proof of
Lemma 5.1.

Corollary 5.2. Let m be an odd integer, m ≥ 5. The
power domination number for the generalized Petersen graph
P(m, 2) is γP(P(m, 2)) = 2.

Proof. Since m ≥ 5 then γP(P(m, 2)) ≥ 2, because any
set containing only one vertex can only dominate its closed
neighborhood. Lemma 5.1 gives γP(P(m, 2)) ≤ 2, and hence
γP(P(m, 2)) = 2. ■

Notice that from the definition of P(m, k), P(m, k) ∼=
P(m, m − k). Therefore, by Lemma 5.1, we know that

FIG. 5. The generalized Petersen graph P(8, 3).
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FIG. 6. Proof of Lemma 5.1. (a) Closed neighborhood of S. (b) Propagation in the outer cycle. (c) Additional
propagations, if needed. (d) P(17, 3) is observed.

γP(P(m, k)) ≤ min{k, m−k}. There are further characteriza-
tions of isomorphic generalized Petersen graphs that allow us
to improve the bounds provided by Lemma 5.1. The follow-
ing result, first proven by Watkins [11] and then by Steimle
and Staton [10], will allow us to extend the results in Corol-
lary 5.2 and improve the bounds provided in Lemma 5.1 for
the power domination number of some generalized Petersen
graphs.

Theorem ([10, 11]). Let m > 3 and gcd(m, k) = 1,
gcd(m, l) = 1, and kl ≡ 1 mod m. Then, P(m, k) ∼=
P(m, l). ■

As a consequence, for any odd integer m, m ≥ 5, and any
integer l such that gcd(m, l) = 1 and 2l ≡ 1 mod m, the gen-
eralized Petersen graphs P(m, 2) and P(m, l) are isomorphic,
so using Corollary 5.2 we can establish the following result.

Corollary 5.3. Let m be an odd integer, m ≥ 5. For any
integer l such that gcd(m, l) = 1 and 2l ≡ 1 mod m, then
the power domination number for the generalized Petersen
graph P(m, l) is γP(P(m, l)) = 2. ■

Furthermore, as a consequence of Corollary 5.3, we know
that γP(P(2p − 1, p)) = 2 for any prime integer p ≥ 3.

Besides, as a consequence of the result in Refs. [10] and
[11], we can also provide an improved version of Lemma 5.1.
Take for example, the graphs P(17, 9) and P(17, 6). As a con-
sequence of Lemma 5.1, we know that γP(P(17, 9)) ≤ 9 and
γP(P(17, 6)) ≤ 6. Using that P(17, 9) ∼= P(17, 8) together
with Lemma 5.1, we obtain γP(P(17, 9)) ≤ 8. However,
with some investigation, one will find that γP(P(17, 9)) = 2
and γP(P(17, 6)) ≤ 3. The reason is that, as a consequence
of the result from Refs. [10] and [11] previously men-
tioned, P(17, 9) ∼= P(17, 2) and P(17, 6) ∼= P(17, 3). These
inequalities, together with Lemma 5.1, give γP(P(17, 9)) =
γP(P(17, 2)) = 2 and γP(P(17, 6)) = γP(P(17, 3)) ≤ 3.

Lemma 5.4. The power domination number for the gen-
eralized Petersen graph P(m, k) is bounded above by
γP(P(m, k)) ≤ l′ where l′ = min{l : P(m, k) ∼= P(m, l)}.

We omit the proof of Lemma 5.4 because it is essentially
the same as the proof for Lemma 5.1.

6. OPEN PROBLEM

Let (�, ·) be a group and let X be a generating set of �. The
Cayley graph C(�; X) is the graph with vertex set � and edges
yz if y·x = z for some x ∈ X. Generalized Petersen graphs are
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a particular case of Cayley graphs. Whether the techniques
used in this article can be generalized to any Cayley graph is
an interesting open problem.
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