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Let G be a simple non-complete graph of order n. The r-component edge connectivity of G denoted
as λr(G) is the minimum number of edges that must be removed from G in order to obtain a graph
with (at least) r connected components. The concept of r-component edge connectivity generalizes
that of edge connectivity by taking into account the number of components of the resulting graph.
In this paper we establish bounds of the r component edge connectivity of an important family of
interconnection network models, the generalized Petersen graphs. Our investigation into this problem
led us to solve another open problem: determining the girth of each generalized Petersen graph.
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1. Introduction

Let G be a simple non-complete graph of order n. An r-component cut of G is a set
of vertices whose removal yields a graph with at least r connected components. The
r-component connectivity of G denoted as κr(G) is the minimum cardinality of an r-
component cut. That is, κr(G) is the minimum number of vertices that must be removed
from G in order to obtain a graph with at least r connected components. Therefore,
κ2(G) = κ(G), the connectivity of G. Notice that κr(G) is defined as the minimum
number of vertices that must be removed from G in order to obtain a graph with at least
r connected components, since for some graphs G it is not possible to obtain a graph
with exactly r connected components by removing vertices. This concept was originally
introduced by Sampathkumar [2] and has been recently studied for hypercubes by Hsu
et al. in [3].

An r-component edge cut of G is a set of edges whose removal yields a graph with
r connected components. The r-component edge connectivity of G denoted as λr(G) is
the minimum cardinality of an r-component edge cut. That is, λr(G) is the minimum
number of edges that must be removed fromG in order to obtain a graph with r connected
components. Notice that λ2(G) = λ(G), the edge connectivity of G. Also, notice that the
minimum number of edges that must be removed from G in order to obtain a graph with
at least r connected components coincides with the minimum number of edges that must
be removed from G in order to obtain a graph with exactly r connected components. The
concept of r-component edge connectivity was introduced by Sampathkumar [2] who
called it general line connectivity.

The following are some important inequalities regarding r-component connectivity and
r-component edge connectivity of an arbitrary simple non-complete graph G of order n.
First, λr(G) ≤ λr+1(G) for r = 2, . . . , n− 1. Also κr(G) ≤ κr+1(G) for r = 2, . . . , n− 1.

E-mail: dferrero@txstate.edu, sh1609@txstate.edu

1



March 11, 2013 International Journal of Computer Mathematics FeHa03˙11˙2013

Moreover, κr(G) ≤ λr(G) for r = 2, . . . , n − 1. Proofs of these inequalities are found in
[2].

In this paper we study κr(G) and λr(G) when G is a generalized Petersen Graph.
Given integers n ≥ 3 and k ≥ 1, the generalized Petersen graph GP (n, k) has 2n
vertices labeled u0, u1, . . . un−1, v0, v1, . . . vn−1. The vertices labeled u0, u1, . . . un−1 are
called outer vertices while those labeled v0, v1, . . . vn−1 are inner vertices. There are three
types of edges in GP (n, k): i) edges connecting outer vertices in the form uiu(i+1) mod n

for i = 0, 1, . . . n − 1; ii) edges connecting inner vertices in the form viv(i+k) mod n for
i = 0, 1, . . . n− 1; and iii) spokes, or edges connecting an outer vertex with an inner one,
in the form uivi for i = 0, 1, . . . , n − 1 for i = 0, 1, . . . n − 1. Since k is only used within
the modular arithmetic, k is restricted to 1 ≤ k < n without loss of generality.

From the definition of generalized Petersen graphs it follows thatGP (n, k) ∼= GP (n, n−
k). Moreover, in some cases it is possible to find integers l, other than k and n− k, such
that GP (n, k) ∼= GP (n, l). The following result from [5] specifies the isomorphism class
of GP (n, k).

Theorem 1.1. Let n be an integer, n ≥ 5. Let k and l be integers relatively prime to
n satisfying 2 ≤ k, l ≤ n − 2. If GP (n, k) ∼= GP (n, l), then either l = ±k mod n or
kl = ±1 mod n.

From this point use the smallest value of k in the isomorphism class of GP (n, k). As a
consequence, we can always restrict k to values between 1 and

⌊
n
2

⌋
. Furthermore, if n is

even, then n
2 is an integer and is not relatively prime to n. Thus for minimal k, we can

conclude 1 ≤ k < n
2 .

In order to study the r-component edge connectivity of generalized Petersen graphs we
use the girth of a graph. Let G be a simple graph with at least one cycle, then the girth
of G, denoted as g(G), is defined as the minimum among the lengths of all cycles in G. A
shortest cycle is a cycle of minimum length. Some bounds for the girth of a generalized
Petersen graph were presented in [4]. In this paper we establish the exact value of g(G)
for every generalized Petersen graph G.

We refer the reader to [1] for background concepts in graph theory not defined in this
Introduction.

2. Girth

In this section we will establish the exact value of the girth of a generalized Petersen
graph GP (n, k) for any integers n ≥ 3 and k ≥ 1. We begin with two special cases when
n = 3 and n = 4. First, note that for an arbitrary graph G, the trivial lower bound for
the girth is g(G) ≥ 3. The graph GP (3, 1) ∼= GP (3, 2), clearly has girth 3, as seen in
Figure 1(a). We will prove later that this is the only graph to have girth 3. In the n = 4
case, GP (4, 1) ∼= GP (4, 3) has girth 4, as seen in Figure 1(b). Any cycle must contain an
even number of spokes, and no two spokes are directly adjacent. If a cycle of GP (4, 1)
has no spokes then it is either 〈u0, u1, u2, u3, u0〉 or 〈v0, v1, v2, v3, v0〉, in both cases of
length 4. If a cycle contains two spokes, then if must contain at least two other edges or
the spokes would be adjacent. Thus any such cycle had length greater than or equal to
4.

The following theorem is a result from [4] which provides an upper bound for the girth
of GP (n, k):

Theorem 2.1. [4] For every n ≥ 5, 1 < k < n
2 , and k relatively prime to n, the girth,

g(GP (n, k)) ≤ min{8, k + 3}. �

In the study of cycles in generalized Petersen graphs we define different patterns.
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(a) GP (3, 1), with g(G) = 3

 

(b) GP (4, 1), with g(G) = 4

Figure 1. The Generalized Petersen Graphs of small order.

(a) The wedge cycle in GP (10, 3) (b) The figure eight cycle in GP (10, 3)

Figure 2. Two different common cycles: the wedge cycle and the figure eight cycle.

A wedge cycle, as seen in Figure 2(a), has the form 〈ui, ui+1, . . . , ui+k, vi+k, vi, ui〉.
It contains exactly one inner edge, two spokes and the outer edges connect-
ing those spokes. A figure eight cycle, as seen in Figure 2(b), has the form
〈ui, ui+1, vi+1, vi+k+1, ui+k+1, ui+k, vi+k, vi, ui〉. This is the shortest cycle that contains
four spokes, and can be found in any generalized Petersen graph. The upperbound es-
tablished in Theorem 2.1 is established because wedge cycles and figure eight cycles are
found in every generalized Petersen Graph.

Lemma 2.2. Let n and k be two relatively prime integers, n ≥ 5, such that k = min{l :
GP (n, l) ∼= GP (n, k)}. If g(GP (n, k)) 6= 8, there is a shortest cycle in GP (n, k) that
contains exactly two spokes. If g(GP (n, k)) = 8, there is a shortest cycle that contains
exactly four spokes.

Proof. Since spokes are the only edges joining outer vertices with inner ones, if a cycle
contains spokes, it must contain an even number of them. Furthermore, since no two
spokes are incident with the same vertex, for each spoke there must be at least one
additional edge in the cycle. Therefore, any cycle with five or more spokes must have
length greater than or equal to 10. But, since g(GP (n, k)) ≤ 8 for integers n ≥ 5 and
1 ≤ k < n

2 , all cycles of minimum length have at most four spokes. Furthermore, the
only case in which there is a cycle of minimum length with four spokes is when the girth
is 8.
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Figure 3. The Petersen Graph, GP (5, 2)

Notice that a cycle that contains no spokes must exclusively have outer vertices or
inner vertices, but cannot have both. Besides, since n is relative prime to k, any cycle
in GP (n, k) which contains no spokes must be of length n. However, since we assume k
to be the minimal in the isomorphism class, k < n

2 . Since 3 < n
2 for n > 6, we get that

k + 3 < n
2 + n

2 = n. Since the girth of GP (n, k) is less than or equal to k + 3 for all
integers n ≥ 5 and 1 ≤ k < n

2 , it is impossible for a cycle of minimum length to have
length n if n > 6. Still, since we assuming n ≥ 5 we still need to analyze the cases n = 5
and n = 6. Calculating the cases, we conclude that only the graph GP (5, 2) has a cycle
of minimal length n that contains no spokes. Furthermore, note that GP (5, 2) has cycles
of minimal length 5 with two spokes, such as 〈u0, u1, v1, v4, u4, u0〉, see Figure 3.

In conclusion, in a graph GP (n, k) where n ≥ 5 and 1 ≤ k < n
2 every cycle of minimum

length must have two or four spokes, except in the graph GP (5, 2). In the case GP (5, 2)
there are cycles of minimal length which contain two spokes. Furthermore, the only case
in which there is a cycle of minimum length with four spokes is when the girth is 8.

Lemma 2.3. Let n and k be two relatively prime integers, n ≥ 5, such that k = min{l :
GP (n, l) ∼= GP (n, k)}. Then, g(GP (n, k)) ≥ 4.

Proof. It suffices to show g(GP (n, k)) 6= 3. If there was a cycle of length three, from
Lemma 2.2 it would contain exactly two spokes. Since no two spokes are incident with
the same vertex, the length of a cycle with two spokes must be at least four, and this is
a contradiction.

Lemma 2.4. Let n and k be two relatively prime integers, n ≥ 5, such that k = min{l :
GP (n, l) ∼= GP (n, k)}. Then, g(GP (n, k)) = 4 if and only if k = 1.

Proof. Assume g(GP (n, k)) = 4. By Lemma 2.2 there exists a shortest cycle C that
contains exactly two spokes. However, since the cycle has length four, the other two
edges must both be incident with each spoke. Therefore the cycle is a wedge cycle with
the form 〈ui, ui+1, vi+1, vi, ui〉. However, since vi is only adjacent to vi+k, vi−k and ui,
for vi to be adjacent to vi+1 it means k = 1 or k = n − 1. Since k is assumed minimal,
k = 1.

Conversely, if k = 1, then GP (n, 1) has a cycle 〈ui, ui+1, vi+1, vi, ui〉, and since by
Lemma 2.3 there are no cycles of length three, then g(GP (n, k)) = 4.

Lemma 2.5. Let n and k be two relatively prime integers, n ≥ 5, such that k = min{l :
GP (n, l) ∼= GP (n, k)}. Then, g(GP (n, k)) = 5 if and only if k = 2.

Proof. Assume g(GP (n, k)) = 5. By Lemma 2.2 there is a shortest cycle C that contains
two spokes, say uivi and ujvj for some integers i, j, 0 ≤ i, j ≤ n−1. The remaining edges
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in C connect either two outer or two inner vertices. In the first case, C is a wedge cycle
with 〈ui, vi, vj=i+k, uj=i±2, ui±1, ui〉, which clearly indicates that k = 2 by minimality of
k. In the second case, C will include the path 〈ui, vi, vi+k, vj=i+2k, uj=i±1, ui〉 and as a
consequence, i+ 2k = i± 1 mod n, so 2k = ±1 mod n. However, this means that 2 and
k are in the same isomorphism class, and the minimality of k implies k = 2.

Conversely, observe that by construction GP (n, 2) contains a wedge cycle of length 5.
Then g(GP (n, 2)) ≤ 5. By Lemma 2.3 and Lemma 2.4 GP (n, 2) does not contain cycles
of length 3 or 4, so we conclude g(GP (n, k)) = 5.

Lemma 2.6. Let n and k be two relatively prime integers, n ≥ 5, such that k = min{l :
GP (n, l) ∼= GP (n, k)}. Then, g(GP (n, k)) = 6 if and only if k = 3 or n = 2k + 2.

Proof. Assume g(GP (n, k)) = 6. By Lemma 2.2 there is a shortest cycle C that contains
two spokes. Therefore, there are three cases for C depending on whether the remaining
four edges connect inner vertices or outer vertices:

Case (i): There are three edges connecting outer vertices and one edge connecting inner
vertices. In this case, C has the form of a wedge cycle. As a result k = ±3 mod n, but
by the minimality of k, we conclude that k = 3.

Case (ii): There are two edges connecting outer vertices and two edges connecting
inner vertices. In this case, C has the form 〈ui, vi, vi+k, vj=i+2k, uj=i±2, ui±1, ui〉, where
in uj=i±2 and ui±1 both are either additions or subtractions. However, this means that
2k = ±2 mod n. Since k < n

2 implies that n > 2k. This implies that 2k cannot equal
2 mod n. Therefore, the only possibility is that n = 2k + 2.

Case (iii): There are one edge connecting outer vertices and three edges connecting
inner vertices. In this case C has the form 〈ui, vi, vi+k, vi+2k, vj=i+3k, uj=i±1, ui〉. From
i + 3k = i ± 1 mod n we can conclude that 3k = ±1 mod n. This means 3 and k are
the in same isomorphism class, so by the minimality of k we must conclude that k ≤ 3.
However, if k < 3, then the girth is less than 6 which contradicts the hypothesis.

To prove the converse, we use the following two cases depending on k:
Case (i): If k = 3, then we can construct a wedge cycle of length 6, which means

g(GP (n, k)) ≤ 6. Furthermore, by Lemmas 2.3, 2.4 and 2.5 GP (n, k) does not contain
cycles of length 3, 4, or 5, so we conclude g(GP (n, k)) = 6.

Case (ii): If n = 2k + 2, then GP (n, k) contains a cycle of length 6 in the form
〈ui, vi, vi+k, vi+2k, ui+2k=i+(n−2), ui+(n−1), ui〉, see Figure 4(c). This construction means
that g(GP (n, k)) ≤ 6. Again, by Lemmas 2.3, 2.4 and 2.5 we know GP (n, k) can contain
cycles of length 3, 4, or 5 only if k = 1 or k = 2. If k = 1, then n = 4 which contradicts
the hypothesis n ≥ 5. If k = 2, then n = 6 which contradicts the hypothesis that n and
k are relatively prime. Therefore, g(GP (n, k)) = 6.

Lemma 2.7. Let n and k be two relatively prime integers, n ≥ 5, such that k = min{l :
GP (n, l) ∼= GP (n, k)}. Then, g(GP (n, k)) = 7 if and only if k = 4 or n = 2k + 3 for
k ≥ 4 or n = 3k ± 2 for k ≥ 5.

Proof. Assume g(GP (n, k)) = 7. By Lemma 2.2 there is a shortest cycle C that contains
exactly two spokes. We consider four cases depending on the remaining five edges in C:

Case (i): There are four edges connecting outer vertices and one edge connecting inner
vertices. In this case C has the form of a wedge cycle. Therefore, k = ±4, so by the
minimality of k we see that k = 4 in this case.

Case (ii): There are three edges connecting outer vertices and two edges connect-
ing inner vertices. In this case C has the form 〈ui, vi, vi+k, vj=i+2k, uj=i±3, ui±2, ui±1〉.
Therefore, 2k = ±3 mod n. However, since n > 2k by the minimality of k we know
2k 6= 3 mod n. Therefore, n = 2k + 3.
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Case (iii): There are two edges connecting outer vertices and three edges connecting
inner vertices. In this case C has the form 〈ui, vi, vi+k, vi+2k, vj=i+3k, uj=i±2, ui±1, ui〉.
Therefore, 3k = ±2 mod n. Since n > 2k we know that 3k < 2n, and thus n = 3k ± 2.

Case (iv): There is one edge connecting outer vertices and four edges connecting inner
vertices. In this case C has the form 〈ui, vi, vi+k, vi+2k, vi+3k, vj=i+4kuj=i±1, ui〉. This
means that 4k = ±1 mod n. However, this means 4 and k are in the same isomorphism
class, so k ≤ 4 by the minimality of k. But, k /∈ {1, 2, 3} because of Lemmas 2.3, 2.4,
2.5, and 2.6.

To prove the converse, we use the following three cases depending on k:
Case (i): If k = 4 we know that GP (n, 4) the wedge cycle has length 7, so we may

conclude g(GP (n, k)) ≤ 7. Furthermore, by Lemmas 2.3, 2.4, and 2.5 GP (n, 4) has no
cycles of length 3, 4 or 5. In addition, by Lemma 2.6 GP (n, 4) can have a cycle of length
6 only if n = 2k + 2 However, if k = 4 then n = 2k + 2 = 10 and since 4 and 10 are not
relatively prime, that case cannot happen under the hypothesis. Thus, we conclude that
g(GP (n, k)) = 7 in this case.

Case (ii): If n = 2k + 3 for k ≥ 4, then GP (n, k) has a cycle of length 7 of the
form 〈ui, vi, vi+k, vj=i+2k, uj=i−3, ui−2, ui−1, ui〉 (see Figure 4(d)), so we may conclude
g(GP (n, k)) ≤ 7. Furthermore, because k ≥ 4 and n 6= 2k + 2 by Lemmas 2.3, 2.4, 2.5,
and 2.6 there are no cycles of length 3, 4, 5, or 6 . Thus, we conclude that g(GP (n, k)) = 7
in this case.

Case (iii): If n = 3k ± 2 for k ≥ 5, then GP (n, k) has a cycle of length 7 of the
form 〈ui, vi, vi+k, vi+2k, vj=i+3k, uj=i±2, ui±1, ui〉 (see Figures 4(e) and 4(f)), so we may
conclude g(GP (n, k)) ≤ 7. Since k ≥ 5, GP (n, k) contains no cycles of length 3, 4 or 5.
In addition, if n = 2k + 2 and n = 3k + 2, then the only solution for k is k = 0, which
contradicts the condition that k ≥ 5. If n = 2k + 2 and n = 3k − 2, then the solution
of the equation is k = 4, which also contradicts that k ≥ 5. Therefore, it is not possible
for GP (n, k) to have a cycle of length 6, and we conclude that g(GP (n, k)) = 7 in this
case.

Theorem 2.8. Let n and k be two relatively prime integers, n ≥ 5, such that k = min{l :
GP (n, l) ∼= GP (n, k)}.

g(GP (n, k)) =


4, if k = 1
5, if k = 2
6, if n = 2k + 2, or k = 3
7, if n = 2k + 3 for k ≥ 4, or n = 3k ± 2 for k ≥ 5, or k = 4
8, otherwise

Proof. By Theorem 2.1 we know g(GP (n, k)) ≤ 8. By Lemmas 2.3, 2.4, 2.5, 2.6 and 2.7
we know exactly when the girth is 4, 5, 6, and 7. Therefore, in all additional cases the
girth must be 8.

3. Edge component connectivity

In this section we provide lower and upper bounds for the r-component edge connectivity
of a generalized Petersen graphs. The lower bounds, however, apply to any connected
graph.

Theorem 3.1. Let G be a connected graph with order n and edge connectivity λ(G). For
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(a) The wedge cycle in GP (10, 3) (b) A figure eight cycle in GP (20, 7)

(c) A shortest cycle when n = 2k+ 2, as

found in GP (8, 3)

(d) A shortest cycle when n = 2k+ 3, as

found in GP (13, 5)

(e) A shortest cycle when n = 3k + 2, as
found in GP (23, 7)

(f) A shortest cycle when n = 3k − 2, as
found in GP (31, 11)

Figure 4. These figures show the six possibilities for a shortest cycle.

every integer r = 2, . . . , n, let λr(G) be the r-component edge connectivity of G. Then,

λr(G) ≥
⌈
rλ(G)

2

⌉
Proof. Notice that from the definition of 2-component edge connectivity, λ(G) = λ2(G),

so it is equivalent to prove λr(G) ≥
⌈
rλ2(G)

2

⌉
. Let Sr be a minimal r-component edge

cut. Then, G−Sr contains exactly r components, say C1, C2, . . . ,Cr. Notice that for each
i = 2, . . . , r, the number of edges in Sr incident to vertices in Ci must be at least λ2(G)

7
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Figure 5. Beginning the (de)construction of GP (20, 3). The wedge cycle, C0, is bold and magenta. The cycle has
minimum length

(otherwise G could have been disconnected by deleting less than λ2(G) edges, which is
a contradiction). However, each edge in Sr will be incident with vertices in two different

components, so we can conclude that |Sr| = λr(G) ≥
⌈
rλ2(G)

2

⌉
.

Since λ(GP (n, k)) = 3, we can derive the following corollary:

Corollary 3.2. Let n and k be integers such that n ≥ 3 and k ≥ 1. Then, for every
integer r = 2, . . . , n,

λr(GP (n, k)) ≥
⌈

3r

2

⌉
Next we provide upper bounds for the r-component edge connectivity of generalized

Petersen graphs. The bounds depend on the structure of the shortest cycles, so each of the
six types of shortest cycles have their own theorem. All of the proofs are by construction
and involve careful analysis of all the cycles of shortest length and how different copies
of these cycles overlap. In each of the piecewise functions that follow, each piece of the
function models a different way that the copies interact with one another.

Theorem 3.3. Let n and k be two relatively prime integers, n ≥ 5, such that k = min{l :
GP (n, l) ∼= GP (n, k)}. If g(GP (n, k)) = k + 3, then for every integer r = 2, . . . , 2n,
λr(GP (n, k)) ≤M1(n, k, r), where

M1(n, k, r) =


2r − 1 2 ≤ r ≤ k + 3

2r − 1−
⌊
r−k−1

3

⌋
k + 4 ≤ r ≤ min {4k, 2n− 4k}

2r − k − 1−
⌊
r−4k−1

2

⌋
4k + 1 ≤ r ≤ 2n− 4k

2r − n+ 3k − 1−
⌊

2
3(r − 2n+ 4k)

⌋
2n− 4k + 1 ≤ r ≤ 2n− k − 1

n+ r 2n− k ≤ r ≤ 2n

Proof. To prove this result, for each r = 2, . . . , 2n we will construct Sr, an r-component
edge cut for GP (n, k) with cardinality M1(n, k, r). Since λr(GP (n, k)) is defined as the
minimum cardinality of an r-component edge cut of GP (n, k), it follows immediately
that λr(GP (n, k)) ≤M1(n, k, r).

Since g(GP (n, k)) = k + 3, for every i = 0, . . . , n − 1 the family of wedge cy-
cles is the family of shortest cycles. Let Ci be the wedge cycle starting at ui, Ci =
〈ui, ui+1, . . . , ui+k, vi+k, vi, ui〉, where all indices are considered modulo n.

We will describe the construction process of each Sr using the cycles described above.
Without loss of generality, let us assume we start the process with the cycle C0 =

8
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Figure 6. GP (20, 3) − S2 which has two components.

Figure 7. GP (20, 3) − Sk+3 with k + 3 = 6 components. The only vertex of C0 in the large component is v0,
which is incident to a bridge that is shown in bold.

〈u0, u1, . . . uk, vk, v0, u0〉, as seen in Figure 5. Notice that for every pair of integers n and
k such that n ≥ 5 and k ≥ 1, λ2(GP (n, k)) = 3. Then, the set of all edges incident to any
given vertex form a minimal edge cut for GP (n, k). In particular, removing the edges
u0un−1, u0v0 and u0u1 isolates u0. Then, S2 = {u0un−1, u0v0, u0u1} is a 2-component
edge cut, as seen in Figure 6. We proceed constructing Sk by adding edges to Sk−1 for
k = 3, . . . , 2n

For every integer r = 3, . . . , k+ 3 we can build an r-component edge cut Sr by adding
two edges to the (r−1)-component edge cut Sr−1. Indeed, isolating the remaining vertices
of C0 in the order specified in the description of C0 above, guarantees that the removal of
exactly two edges suffices to isolate the remaining vertices u1, u2, . . . , uk, vk. Therefore,
for each integer r = 2, . . . k+3 the set Sr constructed has cardinality 3+2(r−2) = 2r−1,
so M1(n, k, r) = 2r − 1 if 2 ≤ r ≤ k + 3.

The vertex v0 has not been isolated yet, as seen in Figure 7, and it is attached to
the large component of the graph only by a bridge. Therefore, Sk+4 can be obtained by
adding one single edge to Sk+3, as in Figure 8. As a consequence, M1(n, k, k+4) = 2r−2.
Notice that 2r − 2 = 2r − 1−

⌊
k+4−k−1

3

⌋
= 2r − 1−

⌊
r−k−1

3

⌋
when r = k + 4.

Once all vertices of C0 have been isolated, we proceed isolating the vertices of C1. How-
ever, vertices u1, u2, . . . , uk have already been isolated by the previous step. Therefore,
only three vertices in C1 remain incident to the large component: uk+1, vk+1 and v1, as
seen in Figure 8. As we proceed in that order, two edges must be removed to isolate
uk+1, two edges must be removed to isolate vk+1 and one edge to isolate v1. Thus, to
create an additional component, we must increase the number of removed edges by two,
except for every third component, where only one edge suffices.

Therefore, the function M1 changes when r ≥ k+ 4. After the first k+ 4 components,
every third component will only be connected by a bridge. This means that M1(n, k, r) =
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Figure 8. This illustrates the transition from the first line to the second line of M1. GP (20, 3) − Sk+4 contains
k + 4 = 7 components. Every vertex of C0 is isolated, and C1 is shown in bold.

Figure 9. GP (7, 2) where n − 2k < 2k, i.e. 7 − 4 < 4. Note that after we isolate v3, the vertex v5 is connected
only by a bridge.

2r−2−
⌊
r−k−4

3

⌋
= 2r−1−

⌊
r−k−1

3

⌋
. Furthermore, if n ≥ 4k, then each cycle C2, . . . , Ck−1

continues this pattern of having three vertices that are not isolated. When we isolate the
vertices on all of these cycles C0, . . . , Ck−1, we have k + 3 + 3(k − 1) = 4k isolated
vertices, so M1(n, k, r) = 2r − 1 −

⌊
r−k−1

3

⌋
for r ∈ [k + 4, 4k] when n ≥ 4k. However,

when n < 4k or equivalently, when n − 2k < 2k (see Figure 9), we have that vn−2k is
a vertex on Ci for some i < k. When this occurs, the pattern changes and this piece of
the function no longer applies. Therefore, the domain for this piece of the function is
r ∈ [k + 4,min {4k, 2n− 4k}].

Next we continue, with Ck. Note, if n < 4k, then [4k + 1, 2n − 4k] is the empty set,
so we are only concerned with the case n ≥ 4k. When we consider Ck, we observe that
now uk, uk+1, . . . , u2k−1 and vk have all been isolated by previous steps (see Figure 10).
As such, the only two vertices connected to the large component are u2k and v2k.

Furthermore, as we continue around the graph, the cycles Ck+1, Ck+2, . . . , Cn−3k all
have exactly two vertices not isolated by previous steps. As such, two edges will need to
be removed to isolate each ui and one edge to isolate each vi, which means M1(n, k, r)
changes every other component. Since this change begins with the 4k + 1 component,
which has 2(4k+ 1)− k− 1 edges removed, we know M1(n, k, r) = 2r− k− 1−

⌊
r−4k−1

2

⌋
for r ∈ [4k + 1, 2n− 4k].

When we have exactly r = 2n − 4k components, this means the vertices u0, u1, . . . ,
un−2k, v0, v1, . . . , vn−2k−1 have been completely isolated and the vertices un−2k+1,
un−2k+2, . . . , un−1, vn−2k, vn−2k+1, . . . , vn−1 are still connected (see Figure 11). At
this point M1(n, k, r = 2n− 4k) = 2r − k − 1−

⌊
2n−4k−4k−1

2

⌋
= 2r − n+ 3k.

When we isolate vn−2k we remove the edge vn−2kvn−k, which makes M1(n, k, 2n−4k+

10
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Figure 10. GP (20, 3)−S4k+1 with 4k+ 1 = 13 components. The cycle Ck is shown in bold. Only two vertices of
Ck are in the large connected component.

Figure 11. This illustrates the third line of M1. GP (20, 3) − S2n−4k+1 with 2n− 4k + 1 = 29 components. The
cycle C2n−3k is in bold.

Figure 12. The transition from the third line to the fourth line of M1. GP (20, 3)−S2n−4k+3 with 2n−4k+3 = 31
components. Note the bridge connecting vn−k=17 to the large component, which is emphasized with bold and in
cyan.

1) = 2r − n + 3k − 1. However, since vn−kv0 was removed in the first step, this means
vn−k can also be isolated by only removing one additional edge (namely, un−kvn−k),
see Figures 12 and 13. This pattern repeats for the next k − 1 cycles, where we isolate
un−2k+i by removing two edges, we isolate vn−2k+i by removing one edge, and we isolate
vn−k+i by removing one edge, where i ∈ [0, k − 1]. Thus, M1(n, k, r) = 2r − n + 3k −
1 −

⌊
2
3(r − 2n+ 4k)

⌋
, and increases by 1, two out of every three components for r ∈

[2n− 4k + 1, 2n− k − 1].
After all of these vertices have been isolated, the graph has the form of 2n− k isolated

vertices and a path of length k, as seen in Figure 14. Therefore, at this point we only
need to remove one edge in order to isolate each vertex. As such, M1(n, k, r) will increase

11
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Figure 13. GP (20, 3)−S2n−4k+4 with 2n−4k+4 = 31 components. The bridge connecting vn−k=17 to the large
component has been removed.

Figure 14. GP (20, 3) nearly disconnected. The only vertices that remain connected form a path of exactly k
vertices, which is illustrated in bold.

by one every time the number of components increases by one.

Theorem 3.4. Let n and k be two relatively prime integers, n ≥ 5, such that k =
min{l : GP (n, l) ∼= GP (n, k)}. If g(GP (n, k)) = 8, then for every integer r = 2, . . . , 2n,
we conclude λr(GP (n, k)) ≤M2(n, k, r), where

M2(n, k, r) =



2r − 1 2 ≤ r ≤ 8
2r − 2−

⌊
r−9

4

⌋
9 ≤ r ≤ min {4k − 6, 2n− 4k}

2r − k + 1 r = 4k − 5 < 2n− 4k

2r − k + 1−
⌊
r−4k+5

3

⌋
4k − 4 ≤ r ≤ 4k + 1

2r − k − 1−
⌊
r−4k−1

2

⌋
4k + 2 ≤ r ≤ 2n− 4k

2r − n+ 3k − 1−
⌊

2
3(r − 2n+ 4k − 1)

⌋
2n− 4k + 1 ≤ r ≤ 2n− k

n+ r 2n− k + 1 ≤ r ≤ 2n

Proof. This proof is very similar to the previous one. Let G = GP (n, k), where
n and k satisfy all of the conditions in the hypothesis. The function M2(n, k, r)
arises from creating an r-component edge cut, Sr, by isolating vertices along re-
peated copies of shortest cycles. Since g(GP (n, k)) = 8, the figure eight cycles,
Ci = 〈ui, ui+1, vi+1, vi+k+1, ui+k+1, ui+k, vi+k, vi, ui〉, are cycles of shortest length,
see Figure 15. An important observation is that Ci ∩ Ci+1 contains four vertices
{ui+1, vi+1, vi+k+1, ui+k+1}.

As before, S2 = {u0u1, u0v0, u0un−1}. To construct, S3 through S8 we add the edges
incident with each vertex of C0, one at a time. As such S3 = S2∪{u1u2, u1v1}, S4 = S3∪
{v1vk+1, v1vn−k+1} and S8 = S7∪{vkv2k, v0vk}. Because of thisM2(n, k, r) = |Sr| = 2r−1

12
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Figure 15. GP (29, 6) which has girth 8. The cycle C0 is shown in bold and green.

Figure 16. GP (29, 6) − S9 which has girth 8. The cycle C1 is shown in bold and red.

for 2 ≤ r ≤ 8.
In G − S8, every vertex of C0 is isolated, except the final vertex v0. This vertex is

connected by a bridge to G− S8, so S9 = S8 ∪ {v0, vn−k}. Since C1 overlaps with C0, in
G − S9 the vertices u1, v1, vk+1, uk+1 are isolated, see Figure 16. However, the vertices
u2, v2, vk+2, uk+2 are still connected in the large component of G− S9. Isolating the first
three vertices requires an additional two edges in S10, S11, and S12. However, isolating
uk+2 will only require one additional edge, because this reaches the end of the cycle C1.
The pattern of adding one additional edge, then three instances of adding two additional
edges repeats from S9 until S4(k−2)+1. This is because the pattern corresponds to the
four vertices which remain connected in C1, C2, . . . , Ck−3. As such, M2(n, k, r) = |Sr| =
2r − 2−

⌊
r−9

4

⌋
for 9 ≤ r ≤ 4k − 7.

G− S4k−7 consists of the isolated vertices u0, u1, . . ., uk−3, v0, v1, . . ., vk−3, uk, uk+1,
. . ., u2k−3, vk, vk+1, . . ., v2k−3, and one large connected component. Continuing along the
pattern of isolating vertices in shortest cycles, we consider uk−2 the first vertex in Ck−2.
Isolating uk−2 requires two edges, so S4k−6 = S4k−7 ∪{uk−2uk−1, uk−2vk−2}, which gives
the second line of the piecewise function. However, now there is a slight change in the
pattern. The vertex uk−1 is now connected by only a bridge because the edges uk−1uk
and uk−2uk−1 have previously been removed. Thus, S4k−5 = S4k−6 ∪ {uk−1vk−1}, and
M2(n, k, r = 4k − 5) = 2r − 2−

⌊
4k−5−9

4

⌋
+ 1 = 2r − k + 1.

However, now the vertices of Ck−3 and Ck−2 must be isolated. Since, three vertices
of Ck−3 are in the large connected component of G − S4k−5, so |S4k−4| = 2r − k + 1,
|S4k−3| = 2r− k+ 1 and |S4k−2| = 2r− k+ 2. This pattern repeats with Ck−2, so we can
summarize this as M2(n, k, r) = 2r − k + 1−

⌊
r−k+5

3

⌋
for 4k − 4 ≤ r ≤ 4k + 1.

In G − S4k+1, six of the vertices of Ck−1 are isolated, namely {uk−1, vk−1, uk, vk,

13
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Figure 17. GP (29, 6) − S4k+1 which has girth 8. The cycle Ck is shown in bold and blue.

Figure 18. GP (29, 6) − S2n−4k+3 which has girth 8. The cycle C10=n−3k−1 is shown in bold. In addition, the
bridge u23=n−kv23=n−k is shown in bold and in purple.

u2k−1, v2k−1}. This leaves only u2k and v2k in the large connected component, see Figure
17. Two edges must be added to S4k+2 and one edge to S4k+3 in order to isolate these
vertices. The pattern of each Ci containing two connected vertices continues through
Cn−3k−2. These cycles correspond to edge cuts S4k+2 through S2n−4k, where edge cuts
with an odd index gain one additional edge while edge cuts with an even index gain two
additional edges. As such M2(n, k, r) = 2r− k−

⌊
r−4k−1

2

⌋
. The last vertex of Cn−3k−2 is

connected by a bridge, so S2n−4k+1 gains one edge vn−2k−2vn−k−2.
The pattern changes slightly in Cn−3k−1. There are still two vertices of Cn−3k−1

in the connected component of G − S2n−4k+1. Thus, S2n−4k+2 gains two edges
un−2kun−2k+1, un−2kvn−2k, and S2n−4k+3 gains one edge vn−2kvn−k. However, the ver-
tex vn−k is now connected by a bridge (see Figure 18), because vn−2kvn−k is in edge
set S2n−4k+3, and vn−kv0 is in edge set S2. The only remaining edge adjacent to vn−k is
un−kvn−k. Thus, S2n−4k+4 gains only one additional edge. This pattern continue through
Cn−2k−2, so M2(n, k, r) = 2r−n+3k−

⌊
2
3(r − 2r + 4k − 1)

⌋
for 2n−4k+1 ≤ r ≤ 2n−k.

At this point G− S2n−k is a path containing k + 1 vertices, see Figure 19. Each edge
removal results in a new component, so M2(n, k, r) = n + r, until all 2n vertices are
isolated, which means 3n edges have been removed.

Theorem 3.5. Let n and k be two relatively prime integers, n ≥ 5, such that k =
min{l : GP (n, l) ∼= GP (n, k)}. If n = 2k + 2, then for every integer r = 2, . . . , 2n,
λr(GP (n, k)) ≤M3(n, k, r), where

14
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Figure 19. GP (29, 6) − S2n−k+1 which has girth 8. The path is shown in bold.

Figure 20. GP (24, 11) which has girth 6, and 24 = 2 · 11 + 2. One copy of the smallest cycle is bold and in red.

M3(n, k, r) =


2r − 1 2 ≤ r ≤ 6
2r − 2 7 ≤ r ≤ min 10, 3k − 1
2r − 3−

⌊
r−11

3

⌋
11 ≤ r ≤ 3k − 1

2r − k + 1−
⌊

2
3(r − 3k + 2)

⌋
3k ≤ r ≤ 3k + 3

n+ r 2n− k = 3k + 4 ≤ r ≤ 2n = 4k + 4

Proof. In the hypothesis of this theorem, the shortest cycles in GP (n, k) are in the form
Ci = 〈ui, ui+1, ui+2, vi+2, vi+k+2, vi+2k+2≡i, ui〉, as in Figure 20.

We begin by isolating each vertex in C0. It requires and edge cut of S2 = 3 edges to
isolate u0, and an additional two edges to isolate each of u1, u2, v2 and vk + 2. As such,
M3(n, k, r) = 2r − 1 for 2 ≤ r ≤ 6. The final vertex of C0 is v0 and requires only one
additional edge for the edge cut S7, so M3(n, k, 7) = 2r − 2.

The next copy of the cycle is C1. The vertices u1 and u2 are isolated in G − S7,
so there are only four vertices in the connected component. The isolation of the first
three of these vertices (u3, v3, vk+3) require the addition of two edges to the edge cut,
so M3(n, k, r) = 2r − 2 for 7 ≤ r ≤ 10. The final vertex, v1 is attached by a bridge so
M3(n, k, r) = 2r − 3.

Next, is C2. In G−S10, u2, v2 and u3 are isolated vertices. vk+4, v4 and u4 are connected.
Therefore, S11 gains two additional edges, S12 gains two additional edges, and S13 requires
one additional edge. This pattern continues with C3 through Ck−3. When Ck−3 is fully
disconnected there are 3(k− 4) + 4 + 6 + 1 = 3k− 1 components. As such, M3(n, k, r) =
2r − 3−

⌊
r−11

3

⌋
for 11 ≤ r ≤ 3k − 1.

15
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Figure 21. GP (24, 11) − S3k−1

Figure 22. GP (25, 11) which has girth 7, and 25 = 2 ·11 + 3. One copy of the shortest cycle is bold and in purple.

In G − S3k−1 the vertices u0, v0, u1, v1, . . . , uk−1, vk−1 and vk+2, vk+3, . . . , v2k−1 have
already been isolated, as seen in Figure 21. As we continue and isolate uk, two additional
edges must be removed, so S3k = S3k−1 ∪ {ukuk+1, ukvk}. In G − S3k, the vertex vk is
connected by a bridge, so S3k+1 = S3k ∪ {vkv2k}. In G − S3k+1, the vertex v2k is also
connected by a bridge, so S3k+2 = S3k+1 ∪ {u2kv2k}. The resulting graph, G − S3k+2 a
single cycle remains, so isolating any vertex requires removing two additional edges. This

section is summarized in M3(n, k, r) = 2r − k + 1−
⌊

2(r−3k+1)
3

⌋
for 3k ≤ r ≤ 3k + 3.

Since G−S3k+3 is a path of length k+ 2, only one edge needs to be removed to create
an additional connected component. Thus, M3(n, k, r) = n+ r for 3k + 4 ≤ r ≤ 2n.

Theorem 3.6. Let n and k be two relatively prime integers, n ≥ 5, such that k =
min{l : GP (n, l) ∼= GP (n, k)}. If n = 2k + 3, then for every integer r = 2, . . . , 2n,
λr(GP (n, k)) ≤M4(n, k, r), where

M4(n, k, r) =


2r − 1 2 ≤ r ≤ 7
2r − 2−

⌊
r−8

4

⌋
8 ≤ r ≤ min {16, 3k − 2}

2r − 4−
⌊
r−16

3

⌋
17 ≤ r ≤ 3k − 2

2r − k + 2−
⌊

2
3(r − 3k + 2)

⌋
3k − 1 ≤ r ≤ 3k + 5 = 2n− k − 1

n+ r 2n− k ≤ r ≤ 2n

Proof. In the hypothesis of this theorem, the shortest cycles in GP (n, k) have the form
Ci = 〈ui, ui+1, ui+2, ui+3, vi+3, vi+k+3, vi+2k+3≡i, ui〉, as seen in Figure 22.

We begin by isolating each vertex in C0. It requires and edge cut of S2 = 3 edges to

16
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Figure 23. GP (25, 11) − S3k−2

isolate u0, and two additional edges to isolate each of u1, u2, u3, v3 and vk + 3. Thus,
M4(n, k, r) = 2r − 1 for 2 ≤ r ≤ 7. The final vertex of C0 is v0 and its isolation requires
only one additional edge in the edge cut S8, so M4(n, k, 8) = 2r − 2.

The next copy of the cycle is C1. The vertices u1, u2 and u3 are isolated in G − S8,
so only four vertices are in the connected component. The first three of these vertices
(u4, v4, vk+4) require the removal of two additional edges to be isolated, so M4(n, k, r) =
2r−2 for 8 ≤ r ≤ 11. The final vertex, v1 is attached by a bridge so M4(n, k, 12) = 2r−3.

We proceed similarly for the cycle C2. The vertices u2, u3 and u4 are isolated in G −
S12, so four vertices are in the connected component. The first three of these vertices
(u5, v5, vk+5) require two additional edges, so M4(n, k, r) = 2r − 3 for 12 ≤ r ≤ 15. The
final vertex, v2 is attached by a bridge so M4(n, k, 12) = 2r − 4. We summarize the last
two paragraphs in M4(n, k, r) = 2r − 2−

⌊
r−8

4

⌋
for 8 ≤ r ≤ min 16, 3k − 2.

Next, is C3. In G − S16, u3, v3, u4 and u5 are isolated vertices while vk+6, v6 and u6

are not. Therefore, S17 gains two additional edges, S18 gains two additional edges, and
S19 requires one additional edge. This pattern continues with C4 through Ck−4. When
all vertices in Ck−4 have been isolated there are 3(k − 4 − 2) + 4 + 4 + 7 + 1 = 3k − 2
components. Therefore, M4(n, k, r) = 2r − 4−

⌊
r−16

3

⌋
for 17 ≤ r ≤ 3k − 2.

G−S3k−2 has the vertices u0, v0, u1, v1, . . . , uk−1, vk−1 and vk+3, vk+4, . . . , v2k−1 already
isolated, as seen in Figure 23. As we continue and isolate uk, two additional edges must be
removed, so S3k−1 = S3k−2∪{ukuk+1, ukvk}. In G−S3k−1, the vertex vk is connected by a
bridge, so S3k = S3k−1∪{vkv2k}. In G−S3k, the vertex v2k is also connected by a bridge,
so S3k+1 = S3k ∪ {u2kv2k}. This pattern repeats with uk+1, vk+1 and v2k+1, so that the
resulting graph,G−S3k+4 a single cycle remains, so isolating any vertex requires removing

two additional edges. This section is summarized in M4(n, k, r) = 2r−k+2−
⌊

2(r−3k+2)
3

⌋
for 3k − 1 ≤ r ≤ 3k + 5 = 2n− k − 1.
G − S3k+5 is a path of length k + 2. As such, only one edge needs to be removed for

each additional component. Thus, M3(n, k, r) = n+ r for 3k+ 6 = 2n− k ≤ r ≤ 2n.

Theorem 3.7. Let n and k be two relatively prime integers, n ≥ 5, such that k =
min{l : GP (n, l) ∼= GP (n, k)}. If n = 3k + 2, then for every integer r = 2, . . . , 2n,
λr(GP (n, k)) ≤M5(n, k, r), where

M5(n, k, r) =


2r − 1 2 ≤ r ≤ 7

2r −
⌊
r−8

4

⌋
8 ≤ r ≤ min

{
16, 9k−7

2

}
2r − 4−

⌊
r−16

3

⌋
17 ≤ r ≤ 9k−7

2

2r − 3(k−3)
2 − 2−

⌊
2
3(r − 9k−7

2 )
⌋

9k−5
2 ≤ r ≤ 9k+7

2
n+ r 9k+9

2 ≤ r ≤ 2n

17
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Figure 24. GP (35, 11) which has girth 7, and 35 = 3 · 11 + 2. One copy of the smallest cycle is bold and in blue.

Proof. Graphs satisfying the conditions in the hypothesis have girth 7 and all shortest
cycles are in the form Ci = 〈ui, ui+1, ui+2, vi+2, vi+k+2, vi+2k+2, vi, ui〉, as seen in Figure
24. Notice that GP (n, k) ∼= GP (n, l) if l = n−3

2 = 3k−1
2 . Since GP (n, l) satisfies all of

the conditions for the previous theorem, except the minimality of the isomorphism class,
we will use the previous case as a guideline, and will often use l in our calculations to
simplify the expressions.

We begin by isolating the vertices of C0. This is identical to the previous cases, so
M5(n, k, r) = 2r − 1 for 2 ≤ r ≤ 7. Next, we will isolate the vertices of Ck. This is
because C0 ∩Ck contains three vertices, whereas C0 ∩C1 only contains two. In addition,
Ck corresponds to the “next” cycle in GP (n, l). As we proceed through Ck we observe
that in G − S7 the vertices v0, vk+2, v2k+2 are already isolated. Thus, only four vertices
vk, uk, uk+1 and uk+2 are in the connected component. It requires two additional edges
for each edge cut, except the final vertex, so |Sr| = M5(n, k, r) = 2k − 2 −

⌊
r−8

4

⌋
for

8 ≤ r ≤ 12. G − S12 has isolated the vertices v0, vk and v2k+2 of C2k. The vertices
v2k, u2k, u2k+1 and u2k+2 remain in the connected component, so the pattern continues
with M5(n, k, r) = 2k − 2−

⌊
r−8

4

⌋
for 8 ≤ r ≤ 16.

Next we proceed to C3k. In G− S16, four of the vertices of C3k are isolated, u0, v0, vk
and v2k. The function changes here so that two vertices v3k and u3k are isolated by adding
two new edges to each respective edge cut, and u3k+1 gains only one additional edge. So,
M5(n, k, r) = 2r − 4−

⌊
r−16

3

⌋
for 17 ≤ r ≤ 19.

We continue along the cycles whose subindices are multiples of k, to C4k≡k−2 mod n.
Since the vertices in Ck were previously isolated and Ck shares several vertices with Ck−2,
there are only three vertices to isolate in G−S19. This pattern continues until Cmk where
mk ≡ 3 mod n. This condition is equivalent to m = 3k−3

2 + 1. The pattern changes at C3

because at this point u3, u4 and v3, each has exactly two incident edges, so it only take 4
edges instead of 5 to isolate them. When the vertices of the cycles C0, Ck, C2k, . . . , C(m−1)k

are all isolated, there are 3(m) + 2 + 4 + 1 = 3
(

3(k−3)
2 + 1

)
+ 7 = 9k−7

2 connected

components, where the 3(m) are 3 vertices for each cycle, the 2 comes from the extra
vertices in Ck and C2k, the 4 comes from the extra vertices in C0, and the 1 come from
the connected component. Thus, M5(n, k, r) = 2r − 4 −

⌊
r−16

3

⌋
for 17 ≤ r ≤ 9k−9

2 . One

valuable observation is that in GP (n, l), the cutoff would be 3l−2 = 3
(

3k−1
2

)
−2 = 9k−7

2 .
When the pattern changes at C3, S 9k−5

2
gains two new edges, and S 9k−3

2
and S 9k−1

2

gains one new edge per vertex, see Figure 25. This pattern continues for Ck+3. Thus,

M5(n, k, r) = 2r − 3(k−3)
2 − 2−

⌊
2
3(r − 9k−7

2 )
⌋

for 9k−5
2 ≤ r ≤ 9k+7

2 .
At this point the only non-trivial connected component is a path. Thus, M5(n, k, r) =

n+ r for 9k+9
2 ≤ r ≤ 2n.
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Figure 25. GP (35, 11) which has girth 7, and 35 = 3 · 11 + 2.

Figure 26. GP (31, 11) which has girth 7, and 35 = 3 · 11 + 2. One copy of the shortest cycle is bold and in cyan.

Theorem 3.8. Let n and k be two relatively prime integers, n ≥ 5, such that k =
min{l : GP (n, l) ∼= GP (n, k)}. If n = 3k − 2, then for every integer r = 2, . . . , 2n,
λr(GP (n, k)) ≤M6(n, k, r), where

M6(n, k, r) =


2r − 1 2 ≤ r ≤ 7

2r − 2−
⌊
r−8

4

⌋
8 ≤ r ≤ min

{
16, 9k−19

2

}
2r − 4−

⌊
r−16

3

⌋
17 ≤ r ≤ 9k−19

2
2r − 3k−9

2 −
⌊

2
3(r − 9k−17

2 )
⌋

9k−17
2 ≤ r ≤ 9k−5

2
n+ r 9k−3

2 ≤ r ≤ 2n

Proof. Graphs satisfying the hypothesis of this theorem have girth 7, so the shortest
cycles are in the form Ci = 〈ui, ui+1, ui+2, vi+2, vi+2k, vi+k, vi, ui〉, as seen in Figure 26. If
we were to invert GP (n, k) into its isomorphic partner GP (n, l) where l = n−3

2 = 3k−5
2 ,

then GP (n, l) satisfies all of the conditions for the previous case, except the minimality
of the isomorphism class.

We begin by isolating the vertices of C0. This is identical to the previous cases, so
M6(n, k, r) = 2r− 1 for 2 ≤ r ≤ 7. Next, we will isolate the vertices of Ck. Again, this is
because C0∩Ck contains three vertices, whereas C0∩C1 only contains two. As we proceed
through Ck we observe that in G− S7 the vertices v2, vk, v2k are already isolated. Thus,
only four vertices vk+2, uk, uk+1 and uk+2 are in the connected component. It requires
two additional edges for each edge cut, except the final vertex, so |Sr| = M6(n, k, r) =
2k − 2 −

⌊
r−8

4

⌋
for 8 ≤ r ≤ 12. G − S12 has isolated the vertices v2, vk+2 and v2k of

C2k. The vertices v2k+2, u2k, u2k+1 and u2k+2 remain in the connected component, so the
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Figure 27. GP (31, 11) − S 9k−19
2

=40
. This shows what happens at Cn−3=28

pattern continues with M6(n, k, r) = 2k − 2−
⌊
r−8

4

⌋
for 8 ≤ r ≤ 16.

Next we proceed to C3k≡2 mod n. In G − S16, four of the vertices of C2 are isolated,
u2, v2, vk+2 and v2k+2. The function changes here so that two vertices u3 and u4 are
isolated by adding two new edges to each respective edge cut, and v4 gains only one
additional edge. So, M6(n, k, r) = 2r − 4−

⌊
r−16

3

⌋
for 17 ≤ r ≤ 19.

We continue along the cycles whose subindices are multiples of k, to C4k≡k−2 mod n.
Since all vertices in Ck were previously isolated and Ck shares several vertices with Ck+2,
there are only three vertices to isolate in G−S19. This pattern continues until Cmk where
mk ≡ −3 mod n. This condition is equivalent to m = 3k−3

2 − 1. The pattern changes at
Cmk≡n−3 mod n because at this point un−2, un−1 and vn−1 each has exactly two incident
edges, so it only take 4 edges instead of 5 to isolate them. When the vertices of the cycles

C0, Ck, C2k, . . . , C(m−1)k are all isolated, there are 3(m)+2+4+1 = 3
(

3(k−3)
2 − 1

)
+7 =

9k−21
2 components, where the 3(m) are 3 vertices for each cycle, the 2 comes from the

extra vertices in Ck and C2k, the 4 comes from the extra vertices in C0, and the 1 come
from the connected component. Thus, M6(n, k, r) = 2r− 4−

⌊
r−16

3

⌋
for 17 ≤ r ≤ 9k−19

2 .
When the pattern changes at Cn−3, it changes so that S 9k−17

2
gains two new edges, and

S 9k−15

2
and S 9k−13

2
gains one new edge per vertex(see Figure 27. This pattern continues

for Ck−3. Thus, M6(n, k, r) = 2r − 3k−9
2 −

⌊
2
3(r − 9k−17

2 )
⌋

for 9k−17
2 ≤ r ≤ 9k−5

2 .
At this point, the only non-trivial connected component is a path. Thus, M6(n, k, r) =

n+ r for 9k−3
2 ≤ r ≤ 2n.

4. Conclusion and Further Research

In this paper we present upper and lower bounds for the r component edge connectivity
of generalized Petersen graphs. However, we left open the identification of the graphs
where one of those bounds provide the exact value of the r-component edge connectivity.

In the introduction we defined the edge and the vertex versions of the concept of compo-
nent connectivity. In this paper we have only studied the r-component edge connectivity.
It is also interesting to study the vertex r-component connectivity of generalized Petersen
graphs.

Generalized Petersen graphs are an interesting family of vertex-transitive and 3-regular
graphs. It would be interesting to explore the extension of the results we found to other
vertex-transitive graphs, or to other families of regular graphs.

Finally, it would be interesting to study the notion of r-component connectivity with
the additional condition that the order of the connected components must be the same,
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or as close to each other as possible. This is a much hard problem, and a more relaxed and
also interesting version of the problem would be to add the condition that the connected
components cannot be trivial. That is, to combine the concepts of super connectivity
and component connectivity.
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