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Abstract

For a given graph G and a positive integer k the Pi-path graph,
Pi(Q), has for vertices the set of all paths of length k in G. Two ver-
tices are adjacent when the intersection of the corresponding paths
forms a path of length k — 1 in G, and their union forms either a
cycle or a path of length k+1 in G. Path graphs were proposed as an
extension of line graphs. Indeed, PiG coincides with the line graph
of G. In this paper we study the connectivity and superconnectivity
of Ps-path graphs and more generally, of iterated Ps-path graphs.

1 Introduction

The Py-path graph corresponding to a graph G has for vertices the set of
all paths of length k in G. Two vertices are connected by an edge whenever
the intersection of the corresponding paths forms a path of length &£ — 1
in G, and their union forms either a cycle or a path of length £+ 1 in
G. Intuitively, this means that the vertices are adjacent if and only if one
can be obtained from the other by shifting the corresponding paths in G.
Path graphs were introduced by Broersma and Hoede in 2] as a natural
generalization of line graphs. A characterization of P,-path graphs is given
in (2] and [7], and distance properties of path graphs are studied in [1] and
[5]. The connectivity and of path graphs was studied by Knor, Niepel [4, 6]
and Mallah [6). Note that the path graph can be thought of as an operator
on graphs, and therefore, we can study graphs arising from the iteration of
the Pg-path graph operator.
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2 Definitions, notation and previous results

Let G = (V, E) be a simple graph, i.e. with no loops or multiple edges,
with vertex set V(G) and edges E(G). The neighbourhood of a vertex v
is the set Ng(v), of all vertices adjacent to v. The degree of a vertex v
is deg(v) = |Ng(v)|. The minimum degree of the graph G, §(G), is the
minimum degree over all vertices of G.

A graph G is called connected if every pair of vertices is joined by a
path. An edge cut in a graph G is a set A of edges of G such that G— A4 is
not connected. Note that if A is a minimal edge cut of a connected graph
G, then G— A necessarily has exactly two connected components. Hence we
denote the edge cut A as A = (C, C), where C is a proper subset of V(G), C
denotes its complement, and and (C, C) denotes the set of edges in A. The
edge-connectivity A(G) of a graph G is the cardinality of a minimal edge cut
of G. Since A(G) < §(G), a graph G is said to be mazimally edge-connected
when A\(G) = 6(G). A minimum edge cut (C,C) is called trivial if C = {v}
or C = {v} for some vertex v with deg(v) = §(G). A maximally edge-
connected graph is called super-) if every edge cut (C, C) of cardinality 6(G)
is trivial. The superconnectivity of a graph is denoted by A;1(G) and it is
defined as A\1(G) = min{|(C,C)|, (C,C) is a non trivial edge cut}. Then,
a graph G is super-A if and only if A\{(G) > §(G).

The girth of a graph G is denoted by g(G) and it represents the
length of a shortest cycle in G.

The Py-path graph corresponding to a graph G has for vertices the
set of all paths of length & in G. Two vertices are connected by an edge
whenever the intersection of the corresponding paths forms a path of length
k—1in G, and their union forms either a cycle or a path of length & + 1
in G. The connectivity of P, path graphs was previously studied by Knor
and Niepel [4]. They introduced some notation to formulate two important
theorems. Next we recall those concepts and results.

Let PY denotes a subgraph of G induced by the vertices in a path
of length 3, say wo,v1,v2,vs, such that neither vy nor vz has a neighbor
in V(G) — {v1,v2}. A path A is in P{ if and only if A = wvo,v1,v2,vs.
Analogously, P{ denotes an induced subgraph of G with a path of length
x, Vg, V1,2, y in which every neighbor of vy and v; except vg, vy and v, has
degree 1, or it has degree 2 and in this case it is adjacent to v;. Moreover,
no vertex of V(PJ) — {v} is adjacent to a vertex of V(G) — V(P§) in G.
A path A of length 3 is in P if vp,v1, s is a subpath of A.

For an independent set of vertices S, let X} denote a graph obtained
from K4 U S by joining all vertices of S to one special vertex of Kjy.

Let K5, be a complete bipartite graph and let (X,Y} be a bipar-
tition of Ky ; where X = {v1,vp}. Join ¢ sets of independent vertices by
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edges, each to one vertex of Y; further, glue a set of stars with at least 3
vertices by one endvertex, each to vy or to vp; glue a set of triangles by one
vertex, each either to v; or wg; and finally, join vy to vy by an edge. The
resulting graph is denoted by K3 ;.

Theorem A [4] Let G be a connected graph such that P3(G) is not empty.
Then, P3(G) is disconnected if and only if one of the following conditions
holds

1) G contains a P?, y € {3,4}, and a path A of length 3 such that A ¢ P?
2) G is isomorphic to K}
3) G is isomorphic to K3,, ¢t > 1. &

Given a simple graph G and a path of length k in it, let us say
Ugui . . . Uk, clearly that path determines a vertex in P,G. We are going
to denote the vertex in PyG by U = wupu;...ux and the path in G by
U:ug,u1,...,us.

The reader is referred to [3] for additional concepts and results about
graphs.

3 Edge connectivity of Ps-path graphs

To measure the connectivity of a graph is obviously interesting when the
graph is connected. For this reason, the foundation of this section is The-
orem A, which provides a characterization of connected Ps-path graphs.
However, we are going to work with a subclass of graphs G for which P3G
is connected. Notice that the conditions on Theorem A are not preserved
under the iteration of the Ps-path graph operator. We are going to show
conditions on the minimum degree that guarantee connectivity, which are
preserved under the Ps-path graph operator. The next lemmas provide
some technical results needed for that purpose.

Lemma 3.1 Let G be a simple graph with minimum degree 6 > 3, and
let apayazas and bobibabs be two wvertices in P3G. If |{ao,a1,az,a3} N
{bo,b1,b2,bs}| = 1, there is path in PsG joining apaiazaz and bobibabs.

Proof: First, notice that it is enough to consider the cases in which
{aOa ai, Gz, a3} N {bO,bl) bZa b3} = ap Or ap. AISO, if {a’O’ ay, a2,a'3} n
{bo,b1,b2,b3} = ag, we have four possible situations, ag = by, ap = b1,
ag = by or ag = bs. In the cases ag = bg or ag = b3, it is clear that there
exists a path joining agaqazas and bgb1babs, so it is only necessary to solve
the cases ag = by, ag = b.
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If ap = by, since § > 3 we can consider a vertex ¢ € N (bs)—{b1, b2},
and the path in P3G, agaiazas, baagaiag, bsbgagay, cbzbaby, b3babibg.

If ag = bg, since § > 3 we can consider a vertex ¢ € N (bg)—{b1, b2},

and the path in P3G, apai1aqas, blaoa1a2, boblaoal, Cboblbz, boblbgbg.
If {ao,a1,a2,a3} N {bo,b1,b2,b3} = a1, we have again four possible situ-
ations, a1 = by, a1 = b1, a1 = by or a; = b3, but the case a; = by is
analogous to the case ap = b; and a; = b3 is analogous to the case ag = b
that were solved previously.

If ay = by, since § > 3 we can consider vertices ¢ € N*(a3) —
{a1,a2} and d € NT(bs) — {b1,be}, and then the path in PG,
00010203, 610203C, babi azasz, b3babiag, dbababy, bsbabibo.

If a1 = by, since § > 3 we can consider vertices ¢ € N¥(a3) —
{a1,a9} and d € N%t(by) — {b1,b2}, and then the path in P3G,
a0G1a2a3, a10203C, bja1azas, bobibaas, dbobiba, bobibobs. B

Lemma 3.2 Let G be a simple graph with minimum degree 6 > 4, and
let agaiazaz and bobibabs be two vertices in PsG. If [{ao,a1,a2,a3} N
{bo, b1, ba,bs}| = 2, there is path in P3G joining apaiazas and bobybobs.

Proof: In order to give paths between the vertices A = agajaqgas and
B = bgb1bgbs it is sufficient to consider the next different cases.

i) If ap,a1 € {bo, b1,b2,b3} we have the following paths depending on B

B = aga1babs: A, capaias,deagas, cagaiby, B with
¢ € N(ag) — {a1,a2,b2}, d € N(c) — {ag, a1}
B = a0b1a1b3: A, a1a2a3¢C, blalagag,aoblalag,eaoblal,B with
¢ € N(as) — {a1,a2}, e.€ N(ag) — {b1,a1}
B= a0b1b2a1: A, b1a0a1a2, b2b1a0a1,B
B = a1a0b2b3: A, bzaoalag,B
B = boagaibs: A,bgagaias, chgagay, B with ¢ € N(bo) — {ao, al}
B = boagheas: A,bpagaias, choagas, debgag, choaghbe, B with
ce N(bo) — {ao,al,bz} and d € N(C) — {bo,ao}

if) If a1,ag € {bo, b1, b2,b3} we have the following paths depending on B

B = ajagbabs: A,capaiaz,apaiazbs, B with ¢ € N(ao) — {a1, a2}
B = a1biagbs: A, capayas,deagar, cagarby, apaibiag, B with
¢ € N(ag) — {a1,a2,b1}, d € N(c) — {ao, a1}
B = a1bibaay: A, capaias, agaiasbs, aiashsby, B with
ce N(ao) - {al, az}
B = a2a1b2b3: A, ai1apa3e, b2a1a2a3,B with e € N(ag) — {0,1, az}
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B = bpajazbs: A,ajasasze,bpaiazagz, chparag, B with
ec N(ag) — {al,az}, cE N(bo) — {0,1,(12}
B = bga1boas: A,aiazase,azazef, baazase, aibaagas, B with
ec N((Ig) — {al,az,bg}, f € N(e) — {az,ae,}

iii) If ag, as € {bo, b1, b2, b3} we have the following paths depending on B

B= aoa3b2b3: A, asapal1ae, bgagaoal,B

B= a0b1a3b3: A, b1a0a1a2, agblaoal,B

B = a0b1b2a3: A, blaoalag,bgblagal,B

B = a3a0b2b3: A, a1a2a3ap, a2a3aob2,B

B = boagasbs: A,aiazasag, azazacbo, asaoboc, B with
cec N(bo) — {a3,ao}

B = b0a0b2a3: A, a1a2a3b2, agagbzao,B

iv) If ag, az € {bo, b1, ba, b3} we have the following paths depending on B

B = agagbobs: A, cagaiasy, agaiasba, a1agbobs, agbobze, B
cE N(ao) - {(11,(12}, e e N(bg) — {ag,bg}
B = a0b1a2b3: A, blagalaz, agblaoal,B
B = a0b1b2a2: A,blaoalag,bgblaoal,B
B = asagbobs: A, boagaiasg, bsboagay, ebsbsag, B with
ec N(b3) — {bz,ao}
B = bpagasbs: A,boagaias, cboapai, debgag, choagaz, B with
¢ € N(bo) — {ao,a1,az2}, d € N(c) — {bo,ao0}
B = boaobgagt A, boaoalaz,a0a1a2b2, a1agb2a0,B. B

The condition on the degree necessary in the previous lemma can be
relaxed if the graph does not have triangles, so we can state the following
result, which can be proved in a similar way.

Lemma 3.3 Let G be a simple graph with no triangles and with minimum
degree § > 3, and let agaiazas and bobibabs be two vertices in PG If
{ao, a1, az,as} N {bo,b1,b2,b3}| = 2, there is path in P3G joining apaiazas
and bgb1bybs. B

Lemma 3.4 Let G be a simple graph with minimum degree § > 4, and
let aparazas and bobibobs be two wvertices in BG. If |{a0,a1,a2,a3} n
{bo, b1, b2, bs}| =3, there is path in P3G joining apaiaza3 and bob1babs.

Proof: In order to give paths between the vertices A = apaiazas and
B = bgb1babs it suffices to consider the next different cases.
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i) If ag ¢ {bo, b1, b2, b3} we have the following paths, depending on B

i)

B = b0a1a2a3:
B = a,bpaqas:

B = a1a2b0a3:
B = ala,za,gbo:

B = b0a1a3a22

B = alboa3a2:
B = a1a3boazl

B= (llagazbo:

B= boazalagi
B= a2b0a1a3!

B= a2a1b0a3:
B = azalagbot

A, a1aga3¢, B, with ¢ € N{a3) — {a1,a2}
A, ayaqsa3c, azased, bpagasze, B, with
ce N(a3) — {al,ag,bo}, de€ N(C) — {ag,a3}
A, capayaz, apaiagbo, B, with ¢ € N{ag) — {a1, az}
A B

A, ayaza3e, bpaiazas, choayaz, debgay, chpaias, B, with
e € N(as) — {a1,a2}, c € N(bo) — {a1, a2, a3},
dE€ N(C) — {bo,al}
A, eagaiasg, deagas, capai by, agaiboas, B, with
ceE N(ao) — {al,ag,bo}, de€ N(C) — {ao,al}
A, eagaiasq, deagay, cagaias, agaiasbg, B, with
¢ € N(ao) — {a1,a2,a3}, d € N(c) — {ao,a1}
A, cagayag, dcagay, cagaias, agaiasas, B, with
¢ € N(ao) — {a1,a2,a3}, d € N(c) — {ao, a1}

A, capgayag, agarazby, arasboe, B, with
¢ € N(ag) — {a1,a2}, e € N(bo) — {a1,a2}
A, aiazaze, asasef, bpasase, a1bpasas, B, with
[AS N(a3) — {al,az,bo}, f S N(e) — {az,as}
A, a1a2a3bg, azazboai, B
A, a1azasby, asazboe, azboef, a1azboe, B, with
ec N(bo) - {al,az,ag}, f € N(e) — {bo,ag}

If a1 ¢ {bo,b1,b2,bs} we have the following paths, depending on B

B = b1a0a2a32
B = aoblazaal
B = agazb1a32

B = a0a2a3b1:

B = b1 apagzag:

B= aob1a3a2:
B = a0a3b1a2:

A, ajaza3c¢, azasced, agagasze, B, with
¢ € N(a3) — {a1,a2,a0}, d € N(c) — {az, a3}
A, ayazasc, azased, biazaze, B, with .
¢ € N(a3) — {a1,a2,b1}, d € N(c) — {az,as}
A, capaiay, aoa1a2b1, alaleag, a2b1a36, B, with
¢ € N(ag) — {a1,a2,a0}, € € N(az) — {az,b1}
A,ajazasby,azasbie, B, with e € N(b1) — {a2,a3}

A, biagaiaz, chiagay, debyag, chiagas, B, with
cE N(bl) — {ao,al,a3}, dE€ N(C) - {bl,ao}

A, aza1a0b1,a1a0b1a3, B

A, aza10003,a1a0a3b1, B
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B = agasaqby: A,azapaios,azazapoar, B

B = bjasagas: A,capaiaz, agaiazby, arazbie, agbief, apazbie, B with
ceE N(ao) — {al,az,ao}, e & N(bl) — {az,al,ao},
f € N(e) — {az, b1}

B = agblaoagi A, alazagao,azagaobl, B

B= azaoblaai A, a1a2a3b1, a2a3b1a0,B

B = a2a0a3b1: A,alazagbl,azagble, a3b16f, a0a3b16,B, with
ecE N(bl) — {az,a3,a0}, f (S N(e) — {ag,bl}. ]

As with Lemma 3.2, for Lemma 3.4 we can obtain the following
improvement for graphs without triangles.

Lemma 3.5 Let G be a simple graph with no triangles and with minimum
degree § > 3, and let apajagas and bobibabs be two vertices in PG, If
|{ao, a1, az, as} N{bo, b1, bz, b3}| = 3, there is path in P3G joining apaiaas
and bob1bobs. B

Lemma 3.6 Let G be a simple graph with minimum degree § > 4, and
let agaiagas and bobibebs be two vertices in P3G. If |{ao,a1,a2,a3} N
{bo, b1, b2, b3}| = 4, there is path in P3G joining apa1a2a3 and bgb1babs.

Proof: In order to prove this statement we are going to give a path between
the vertex U = apaiazas and any other vertex V obtained by a permuta-
tion on the set {ao,a1,az,asz}. However, notice that since we consider
undirected paths, among the 23 possibilities for the second vertex, there
are only 11 different cases. Furthermore, since U is adjacent to azagaiaz
and agagagal, and it is at distance 2 of agazapay, it only remains to study
eight cases that can be reduced to the following situations.

If V = agazaiaz (or V = ajazapas), since § > 4 we can consider
vertices ¢ € N(ag) — {a1,az2,a3} and d € N(c) — {ao, a3}, and then the
path in P3G, U, a1az2a3ao, a2a3a0¢, azaocd, a1a3aoc, V.

If V = agazasza; (or V = agapaiaz), since § > 4 we can consider
vertices ¢ € N(ag) — {a1,a2} and d € N(c) — {ao,a1}, and then the path
in P3G, U, cagayaz, dcagas, capa1a3, aoe1a302, V.

If V = agajaszas (or V = ajapazas), since § > 4 we can consider
vertices ¢ € N(ag) — {a1,az2,a3} and d € N(c) — {ao,a1}, and then the
path in P3G, U, cagaiaz, dcapai, cagaras, V.

If V = ajazaoas, since § > 4 we can consider vertices ¢ €
N(ao) — {az,as,a3} and d € N(c) — {ao,as}, and then the path in P3G,
U, a102a300, G20300C, A3a0Cd, G1a300C, 0201a300, V.

39



If V = agajazao, since § > 4 we can consider vertices e € N(a3) —
{a2,01}, ¢ € N(a1) — {ao,a2,as} and d € N(c) — {ap,a1}, and then the
path in P3G, U, ajaqase, caiaqas, deayas, caiazag, ajagapas, V.

The cases between parenthesis can be solved analogously but consid-
ering vertices ¢ € N(ag) and f € N(e) with the corresponding conditions
to guarantee that the sequences involving them do not repeat vertices of g
so they represent vertices in P3G. &

Once again, for graphs without triangles there is an improvement of
the previous lemma.

Lemma 3.7 Let G be a simple graph with no triangles and with msnimum
degree 6 > 3, and let apaiazas and bobibobs be two vertices in PsG. If
|{ao, a1, az,a3} N{bg,b1,ba,bs}| = 4, there is path in P3G joining agaiazas
and b0b1b2b3.

Theorem 3.8 Let G be a connected graph with minimum degree § > 4.
Then, P3G is connected.

Proof: Let U = agayiazaz and V = bybibgbs be two different vertices in
P3G. If |{ao,a1,a2,a3} N {bo, b1,b2,b3}| = B, since G is connected there
is a path joining the endpoints of the path U : ag, a1, az,as and the end-
points of the path V' : bg,b;,b2,b3. Let us see that such path induces a
path between U and V in P3G. Indeed, if there is a path joining an end-
point of U and an endpoint of V' which does not contain internal vertices
neither in U nor in V, it is easy to prove that such path in G induces
a path between the vertices U and V in P3G. Otherwise, there is for
example, a path joining ag with wither b; or by, which does not contain
internal vertices in U or in V. Let us assume that the path joins ag and
b2. Then, since § > 4 there exists a vertex ¢ € N(bp) — {b1,b2} and
as a consequence, a vertex cbobibs which is adjacent with the vertex V.
From such vertex it is possible to reach the vertex U using the path be-
tween by and ap. Analogously it can be solved the case in which there is
a path between ag and by. If |{ao, a1, az,as} N {bo,b1,ba,b3}| # 0, then
{ao,a1,a2,a3} N {bo,b1,b2,b3}| = 1,2,3 or 4, and we can respectively ap-
ply lemmas 3.1, 3.2, 3.4 or 3.6 to guarantee the existence of a path joining
Uand V. @

Note that the above theorem establishes a sufficient condition for a
connected graph GG to have a connected path graph P3G. This result is
used in this section because the condition § > 4 is preserved under the
Ps-path graph operator. However, Theorem A provides a stronger result.

Corollary 3.9 Let G be a connected graph with minimum degree § > 4.
Then, for every positive integer n, P}G is connected.
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Proof: First, notice that the minimum degree of P;G is lower bounded by
2(6 — 2), so more generally, the minimum degree of PI*G is lower bounded
by 276 — 27%2 4 4, which is as least 4. Then, it is enough to reason by
induction on n and apply Theorem 3.8 to get the result. &

As it was done in Theorem 3.8, but using Lemmas 3.3, 3.5 and 3.7
instead Lemmas 3.2, 3.4 and 3.6 we obtain the following result for graphs
without triangles.

Theorem 3.10 Let G be a connected graph with no triangles and with
minimum degree 6 > 3. Then, P3G is connected. B

The hypothesis of the previous theorem is preserved under the Ps-
path graph operator, so there is the following corollary.

Corollary 3.11 Let G be a connected graph with no triangles and with
minimum degree 6 > 3. Then, for every positive integer n, P{G 4s con-
nected. B

Now that we have found a class of graphs for which the Ps-path
graph operator gives connected graphs we shall measure the connectivity
of that class.

Lemma 3.12 Let G be a connected graph with minimum degree & > 4.
Then, there exist 6 — 3 disjoint paths of length 3 between any two adjacent
vertices in P3G,

Proof: Without loss of generality, we can assume that two adjacent vertices
in P3G can be written as U = ugujugus and V = ujuqusuys. Since 6 > 4,
there exist b; € Ng(usg) — {u1,ue,ua}, i =1,...,6 —3 and ¢; € Ng(u1) —

{ug,u2,us}, 5 = 1,...,6 — 3, and as a consequence, there exist vertices
ur ... ugh; and cjuq ... ug in P3G, Then, because of the adjacency rules in
P3G, for each i = 1,...,6 — 3 we can assign each b; with one particular

¢cj, that for simplicity will be denoted as ¢;. Then, there is a path 7; :
U, ujugusb;, c;uiugus, V in P3G, which obviously has length 3 and joins U
and V. Let us see that these paths are disjoint. In fact, since the only
case in which two paths P; and P; could share a vertex different from the
endvertices of (U, V) is if ujugusb; = cjuiugus, which implies in particular
uy = u1, which is not possible because ug,u1, g, us is a simple path in G.
Therefore, we have obtained the é — 3 paths claimed. &

Lemma 3.18 Let G be a connected graph no triangles and with- minimum
degree § > 3. Then, there exist § — 2 disjoint paths of length 3 between any
two adjacent vertices in P3G,
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Proof: Let U = uguqugug and V = ujuquguy be two adjacent vertices in
P3G. Since § > 3, there exist b; € Ng(us) — {ug,ua}, ¢ = 1,...,6 — 2
and ¢; € Ng(u1) — {ug,u2}, s =1,...,8 — 2, and as a consequence, there
exist vertices ui...urb; and cjui...ux in P3G. Since G does not have
triangles, assigning each vertex b; with one particular vertex ¢;, for every
i=1,...,6 — 2 there is a path P; : u, u1ugusb;, c;ususus,v in P3G, which
obviously has length 3 and joins U and V. Those paths are disjoint since
the only case in which two paths P; and P; could share a vertex different
from the endvertices of (U, V) is if ujugusb; = cjuiugus, which implies in
particular ug = uq, which is not possible because wug, u1,ug, u3 is a simple
pathin G. B

UpU1U2U3 UL UU3U4

U1UQU3bi CjU1U2U3
Fig.1 Paths given in Lemma 3.12 and Lemma 3.13

Observe that the Ps-path graph operator transforms cycles of length
3 into cycles of length 3. As a consequence, the previous lemmas give rise to
the following corollary, which illustrates an interesting property of Ps-path
graphs.

Corollary 3.14 Let G be a connected graph with minimum degree § > 3.
Then, g(PsG) = 3 or 4. Moreover, g(P3G) =3 if and only if g(G) = 3. &

Lemma 3.15 Let G be a connected graph with minimum degree § > 4.
Then, there exist § — 2 edge disjoint paths of length 8 between any two
adjacent vertices in P3G.

Proof: Without loss of generality, we can assume that two adjacent vertices
in P3G can be written as U = ugujusug and V = uyugusuy. Since § > 4,
for each i =1,...,d — 2 there exist vertices

a§ € Ng(uo) — {u1,us}
a‘? € NG(’U,Q) — {UO,U1}
a§ € Ng(ah) — {u1,uz}
aj € Ng(ay) — {uz,a4}
at € Ng(ug) — {ug,us}
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Also, if a} # ua, for each i =1,...,8 — 2 we have a path Q;

U, aluouluz,uouluzaz,uluza2a3,u2a2a3a4,
U3ULAL A, U4 UIULAS, UpUsU4aE, V

These paths are edge disjoint because for each value of ¢ =1,...,§ — 2 we
can choose different vertices ai,a$,a},al, so even when for a} there are
only § — 3 possible values because we need the condition a) # ug, using the
fact that u; # u; if ¢ # j it can be shown that the paths can share at most
one vertex, so they are edge disjoint. B

Lemma 3.16 Let G be a connected graph with no triangles and with min-
imum degree § > 3. Then, there exist § — 1 edge disjoint paths of length 8
between any two adjacent vertices in PsG.

Proof: Let U = ugujugus and V = ujuousuyg be two adjacent vertices in
P3G. Since § > 3, for each 2 = 1,...,6 — 1 there exist vertices

If ab # us, since G has no triangles, for each ¢ = 1,...,6 — 1 we have a
path Qiu

U aluouluz, U0U1U2a2, u1u2a2a3, uza2a3a4,
UzU205 0%, U4U3U2AS, UgUaU40E, V

These paths are edge disjoint because for each valueof i =1,...,6 — 1 we
can choose different vertices a, a§, a, a5, so even when choosmg a} there
are only § — 2 possibilities to impose a} # ug, since u; # u; if 4 # j, the
paths can share at most one vertex. &

UoU1U2U3 o - U1U2U3U4
abuouiug Uguzuaad
UpU Ugah adususug
urugabal ababuqus
ugabalay
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At this point we are going to split the study of the connectivity into
two cases, depending on the graph G having triangles or not. As it can
be seen from the previous lemmas, there are more disjoint paths between
adjacent vertices if the graph does not have triangles, or equivalently, the
girth is at least 4. Indeed, the minimum degree is larger in path graphs of
graphs with no triangles. Notice that a vertex uguiusus in P3G is adjacent
with the vertices ujugusz and yuouiug, where x € Ng(us) — {ug,u1} and
Y € Ng(ug) — {u1,us}, so if §(G) = 6, then §(P3G) > 2(6 — 2). However,
if G has no triangles it follows immediately that z # u; and y # ug, so

§(PsG) = 2(6 — 1).

3.1 PFs3-Path graphs of graphs with triangles

Theorem 3.17 Let G be o connected graph with minimum degree & > 4,
then P3G is mazimally connected.

Proof: A vertex U = upujugug in P3G is adjacent with the vertices ujuqusz
and yuouiug, where z € Ng(us) — {ug,u1} and y € Ng(ug) — {u1,us}, so
§(PsG) = 2(0 — 2) or §(P3G) = 2(6 — 2) + 1. In any case, §(P3G) is de-
termined by the minimum number of vertices in Ng(us) — {uz2,u1} and
Ng(uo) — {u1,u2}, taken over all the vertices of P3G. As it was shown in
the proof of Lemma 3.12, every vertex in the form uiuouzz determines the
first edge of a path of length 3 between U and every other vertex adjacent
with U. Analogously, every vertex in the form yuoujus determines the first
edge of a path of length 8 between U and every other vertex adjacent with
U. Hence, §6(P;@) equals the number of edge disjoint paths joining the
endpoints of every edge in G, and we conclude §(P3G) = A\(B5G). B

Comparing the results in the above theorem to the minimum degree
of P3G we obtain the following corollary.

Corollary 3.18 Let G be a connected graph with minimum degree § > 3.
Then, A\(P3G) >22(6—2). B

The study of the superconnectivity makes sense only for maximally
connected graphs. For this reason, it is restricted to graphs with § > 4.

Theorem 3.19 Let G be a connected graph with minimum degree § > 5.
Then, P3G is super-A.

Proof: By contradiction, let us suppose that there is a non trivial edge cut
in A in P3G where |A| = §(P3G). From Theorem 3.17, for a given cdge
e = {U,V} in A there exist §(P3G) — 1 edge disjoint paths, apart from
the edge e, between U and V. Therefore, since A is an edge cut it must
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contain at least one edge in each of those paths. Furthermore, since A is
non trivial, not all those edges can be adjacent with e. We can assume then
that there is an edge, let us say e;, which is in A and it is not adjacent with
e. Let P; be the path between U and V in which e; is contained. Since
& > 5, and because of Lemma 3.12 and Lemma 3.15, there exists at least
one path, let us say P;, which is disjoint with P; and have the same length
as P;. Let us suppose,

P U =ag,a1,...,a1 =V

Pj:U:bO,bl,"-abl:V

where | = 3 or 8, according to Lemma 3.13 and Lemma
316. If e, = {ar,ar41}, then we can consider the path U =
0,1y .+ ApryDpy1,8rq2,...,00 = V. If e; is the only edge of P; in A,

it is not possible for A to be an edge cut. If there are other edges of P; in
A, we can repeat the procedure as many times as needed, in each step elim-
inating one of those edges from P;. In any case, the new path constructed
is in G — A because it is edge disjoint with the §(P3G) paths joining U and
V, and |A| = 6(PsG). B

U o » N4

Fig.3 Construction used in Theorem 3.19 and Theorem 3.22 if [ = 8

U V> Qr42, br+2
Qr Op+1
br br+1

Fig.4 Construction used in Theorem 3.19 and Theorem 3.22 if [ = 3
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3.2 P;-Path graphs of graphs with no triangles

For graphs without triangles we can establish an improvement of Theorem
3.17 that can be proved analogously.

Theorem 3.20 Let G be a connected graph with minimum degree § > 3.
Then P3G is mazimally edge connected. B

Since G has no triangles, §(P3G) is exactly 2(§ — 1), and this allows
us to estate the following corollary.

Corollary 3.21 Let G be a connected graph with no triangles and with
mingmum degree § > 3. Then, A\(P3G) =2(6—1). B

As a consequence of Theorem 3.20, to study the superconnectivity
of graphs without triangles we only need the condition § > 3. Reasoning
as in Theorem 3.19 and it can be proved the following result.

Theorem 3.22 Let G be a connected graph with no triangles and with
minimum degree § > 4. Then, P3G is super-\. B

4 Iterated P; path graphs

For a simple graph G, the graph PJG is defined as P}G = P3G if n = 1,
and PRG = P3(P}'G), otherwise. In order to extend the results about
connectivity and superconnectivity of P3G to any PG, the foundations
are the conditions on G to guarantee that PG is connected that were es-
tablished in Corollary 3.9 and Corollary 3.11.

By induction on n and using Theorem 3.17 the next result can be
obtained.

Theorem 4.1 Let G be a connected graph with minimum degree 6 > 4.
Then PP'G is mazimally connected. B

Again by induction on n and applying Corollary 3.18 the following
corollary can be shown.

Corollary 4.2 Let G be a connected graph with minimum degree § > 4.
Then, A(P}G) > 2" —2"t2 4 4. B

In the case of graphs without triangles, as a consequence of Corollary

3.14, we can respectively apply Theorem 3.20 and Corollary 3.21 to improve
the two previous results.
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Theorem 4.3 Let G be a connected graph with no triangles and with min-
imum degree § > 3. Then PG is mazimally edge connected. @

Corollary 4.4 Let G be a connected graph with no triangles and with min-
imum degree § > 3. Then, A(PPG) =276 — 2"+l + 2. |

For maximally connected P{G path graphs it is interesting to study
the superconnectivity. The next two results follow from Theorem 3.19 and
Thoerem 3.22 by induction on n.

Theorem 4.5 Let G be o connected graph with minimum degree § > 5.
Then PG is super-A. B

Theorem 4.6 Let G be a graph connected graph with no triangles and with
minimum degree § > 4. Then, P}G is super-A. B
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