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An interconnection network is a highly symmetrical connected graph of order n nodes, size m edges, connectivity k
and diameter d, where n and k are large but m and d are small. Many interconnection networks are defined
algebraically in such a way that each node has an integer value. Then every edge can be assigned the sum of the
two nodes it joins. These numbers are called the edge sums of the graph. The edge sum problem of a graph is to
characterize the set of edge sums. This problem was introduced by Graham and Harary who presented the
solution for hypercubes. Our object is to characterize the edge sums for another family of interconnection
networks, namely, deBruijn graphs.
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1 INTRODUCTION

We begin by describing the solution [2] to the edge sum problem for hypercubes. The hyper-

cube Qn has for its nodes the set Vn of all the binary sequences with n terms, two of which are

adjacent whenever the sequences disagree in exactly one place. The number assigned to an

edge of Qn is the sum of the numbers of its two nodes (see Figure 1). The following char-

acterization was established:

THEOREM 1A [2] A positive integer x is an edge sum of some hypercube if and only if

x 6� 3(mod 4):

Given a digraph D, we write GD for the unary operation on D called the graph of G. Now

GD is the graph obtained from digraph D by keeping all the nodes of D, but replacing each

single arc joining two nodes of D by an undirected edge, and also replacing each symmetric

pair of arcs in D by a single edge. If there are loops, they are removed.
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2 DEBRUIJN DIGRAPHS AND GRAPHS

We must first define the deBruijn digraph Bn, n � 2: Again, Bn has the same node set Vn as

for the hypercube Qn: But now, two nodes a and b are adjacent whenever the last n� 1 terms

of a are identical with the first n� 1 terms of b: Now we can define the well-known family of

interconnection networks, the deBruijn graphs GBn (see Figures 2 and 3 for examples). For

conciseness, we write Bn ¼ GBn:
Given a numerical labeling of the nodes of a graph G, the network N (G) is constructed by

assigning an integer weight to the edges of G as follows. The weight wij or edge sum of edge

ij 2 E(G) is defined by wij ¼ iþ j:
With each graph Gn we can associate a set Ln of the weights on the edges of N (Gn): The

edge sum problem consists of the characterization of the set Ln of all integers that are the

weights on the edges of N (Gn): When restricted to a family of graphs, the problem consists

FIGURE 2 The two smallest deBruijn digraphs.

FIGURE 1 Graphs Q2 and Q3 with their edge sums.
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of determining the set of all integers that are the weight of an edge in some graph of the

family.

3 EDGE SUMS OF DEBRUIJN GRAPHS

The deBruijn graphs can also be defined in the following way. Given a positive integer n, the

deBruijn graph Bn has 2n nodes that can be labeled with Z2n , the integers module 2n: Its

edges are in the form ijk , where jk ¼ 2iþ k for some k ¼ 0 or 1.

With this labeling on Bn we consider the network N (Bn) in which the weight of the edge ijk
is wijk ¼ iþ jk : Figure 4 shows an example.

FIGURE 4 Graphs B2 and B3 with their edge sums.

FIGURE 3 The two smallest deBruijn graphs.
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To study the edge sums for the network N (Bn) we distinguish the following four classes of

edges in Bn:

(I) {0x1 . . . xn�1, x1 . . . xn�10}, where xi 2 {0, 1} for all i ¼ 1, . . . , n� 1, and at least one

term xi differs from 0:
(II) {0x1 . . . xn�1, x1 . . . xn�11}, where xi 2 {0, 1} for all i ¼ 1, . . . , n� 1:

(III) {1x1 . . . xn�1, x1 . . . xn�10}, where xi 2 {0, 1} for all i ¼ 1, . . . , n� 1:
(IV) {1x1 . . . xn�1, x1 . . . xn�11}, where xi 2 {0, 1} for all i ¼ 1, . . . , n� 1, and at least one

term xi differs from 1:

Let x be the integer whose binary representation is given by the sequence x1 . . . xn�1, then

0 � x � 2n�1 � 1 and we can state:

(I) {0x1 . . . xn�1, x1 . . . xn�10} has edge sum 3x:
(II) {0x1 . . . xn�1, x1 . . . xn�11} has edge sum 3xþ 1:

(III) {1x1 . . . xn�1, x1 . . . xn�10} has edge sum 3(xþ 2n�1) � 2n:
(IV) {1x1 . . . xn�1, x1 . . . xn�11} has edge sum 3(xþ 2n�1) þ 1 � 2n:

Observe that in case (I) and (IV) we must ask x 6¼ 0 and x 6¼ 2n�1 � 1 respectively, because

the graph has no loops.

PROPOSITION 3.1 Let n be a positive integer and y an integer, 0 � y � 2n � 2: Then, 1 þ y

is an edge sum of Bn if and only if 2nþ1 � 3 � y is an edge sum of Bn:

Proof We start proving that 1 þ y is the edge sum of a type (I) edge, if and only if

2nþ1 � 3 � y is the edge sum of a type (IV) edge. Indeed, 1 þ y is the edge sum of an edge

{0x1 . . . xn�1, x1 . . . xn�10} if and only if 1 þ y ¼ 3x, where x is the integer represented by

x1 . . . xn�1: Then, y ¼ 3x� 1 and so 2nþ1 � 3 � y ¼ 2nþ1 � 3 � (3x� 1), which is exactly

the edge sum of the type (IV) edge {1(1 � x1) . . . (1 � xn�1), (1 � x1) . . . (1 � xn�1)1}: In the

same way we can show that 1 þ y is the edge sum of a type (II) edge {0x1 . . . xn�1,

x1 . . . xn�11} if and only if 2nþ1 � 3 � y is the edge sum of a type (III) edge {1(1 � x1) . . .
(1 � xn�1), (1 � x1) . . . (1 � xn�1)0}, which is sufficient to conclude the proof. j

If we look at the edge sums module 3,

� The sums for edges of type (I) are all integers congruent to 0(mod 3), between 3 and

3(2n�1 � 1):
� The sums for edges of type (II) are all integers congruent to 1(mod 3), between 1 and

3(2n�1 � 1) þ 1:

For the next two classes we need to consider two cases depending on n being even or odd,

since 2m �3 2 if m is even and 2m �3 1 if m is odd.

– If n is even:

� The sums for edges of type (III) are all integers congruent to 2(mod 3) between 2n�1 and

3(2n�1 � 1) þ 2n�1:
� The sums for edges of type (IV) are all integers congruent to 0(mod 3) between 1 þ 2n�1

and 3(2n�1 � 1) þ 2n�1 þ 1:
– If n is odd:

� The sums for edges of type (III) are all integers congruent to 1(mod 3) between 2n�1 and

3(2n�1 � 1) þ 2n�1:
� The sums for edges of type (IV) are all integers congruent to 2(mod 3) between 1 þ 2n�1

and 3(2n�1 � 1) þ 2n�1 þ 1:
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Now we are able to state the following two theorems that give a complete description of

the edge sums of Bn, the set Ln, depending on n even or odd.

THEOREM 3.2 Let n be a positive even integer, then the edge sums set of Bn is

Ln ¼ {m: m �3 0 or m �3 1, 1 � m � 3(2n�1 � 1) þ 1}

[ {m: m �3 2 or m �3 0, 2n�1 � m � 3(2n�1 � 1) þ 2n�1}:

Proof The edge sums of type (I) edges in Bn is the set {m: m �3 0, 1 � m �

3(2n�1 � 1) þ 1} and the edge sums of type (II) edges is the set {m: m �3 1, 1 � m �

3(2n�1 � 1) þ 1}: Also if n is even the edge sum of type (III) edges in Bn is the set

{m: m �3 2, 2n�1 � m � 3(2n�1 � 1) þ 2n�1} and the edge sums of type (IV) edges is the

set {m: m �3 0, 2n�1 � m � 3(2n�1 � 1) þ 2n�1}: The union of those four sets gives the set

of edge sums of Bn: j

THEOREM 3.3 Let n be a positive odd integer, then the edge sums set of Bn is

Ln ¼ {m: m �3 0 or m �3 1, 1 � m � 3(2n�1 � 1) þ 1}

[ {m: m �3 1 or m �3 2, 2n�1 � m � 3(2n�1 � 1) þ 2n�1}:

Proof The edge sums of types (I) and (II) edges in Bn, are respectively the sets {m: m �3 0,

1 � m � 3(2n�1 � 1) þ 1} and {m: m �3 1, 1 � m � 3(2n�1 � 1) þ 1}: Moreover, since n

is odd, the edge sum of types (III) and (IV) edges in Bn are the sets {m: m �3 1,

2n�1 � m � 3(2n�1 � 1) þ 2n�1} and {m: m �3 2, 2n�1 � m � 3(2n�1 � 1) þ 2n�1}: The

union of those four sets is the set of edge sums of Bn: j

Observe that the edge sums of Bn are integers in the interval [1, 2nþ1 � 3]: The next two

corollaries provide a characterization of the integers in that interval that are not in the

edge sums set of Bn:

COROLLARY 3.4 Let n be a positive even integer, the edge sums set of B(2, n) contains all

the integers between 1 and 2nþ1 � 3, except the 2((2n�1 � 2)=3) integers in the set:

{m: m �3 2, 0 � m � 2n�1 � 2} [ {2n � 2 � m: m �3 2, 0 � m � 2n�1 � 2}:

Proof By Theorem 3.2 we know the set Ln of all the edge sums of B(2, n): Therefore,

{m: 1 � m � 2nþ1 � 3} � Ln is the union of the sets {m: m �3 2, 0 � m � 2n�1 � 2} and

{m: m �3 1, 2n�1 � m � 3(2n�1 � 1) þ 2n�1}: This last set can be expressed as {2n � 2 � m:

m �3 2, 0 � m � 2n�1 � 2} using Proposition 3.1. j

COROLLARY 3.5 Let n be a positive odd integer, the edge sums set of B(2, n) contains all

integers between 1 and 2nþ1 � 3, except the 2((2n�1 � 1)=3) integers in the set:

{m: m �3 2, 0 � m � 2n�1 � 1} [ {2n � 3 � m: m �3 2, 0 � m � 2n�1 � 1}:

Proof By Theorem 3.3 we know the set Ln of all the edge sums of B(2, n): As in Corol-

lary 3.4, {m: 1 � m � 2nþ1 � 3} � Ln is union of the sets {m: m �3 2, 0 � m � 2n�1 � 1}

and {2n � 3 � m: m �3 2, 0 � m � 2n�1 � 1}: j
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The multiplicity of an integer s as edge sum of a certain Bn is the number of edges whose

edge sum is s:

THEOREM 3.6 Let n be a positive even integer, the multiplicity of all the integers in the edge

sum set of Bn is 1, except the ((2n � 4)=3) þ 1 integers in the set {m: m �3 0, 1þ 2n�1 �

m � 3(2n�1 � 1)} that have multiplicity 2:

Proof The edge sums of type (II) edges have all multiplicity 1 because each integer in the

set {m: m �3 1, 1 � m � 3(2n�1 � 1) þ 1} is the edge sum of one and only one type (II)

edge, while other types of edges have their edge sums not congruent to 1(mod 3). Similarly,

the edge sums of type (III) edges also have multiplicity 1: However, types (II) and (IV) edges

have edge sums congruent to 0(mod 3) in the integer intervals [1, 3(2n�1 � 1) þ 1] and

[2n�1, 3(2n�1 � 1) þ 2n�1], respectively. The intersection of those intervals, the set {m:

m �3 0, 1 þ 2n�1 � m � 3(2n�1 � 1)}, gives the only edge sums with multiplicity 2: j

THEOREM 3.7 Let n be a positive odd integer, the multiplicity of all the integers in the edge

sum set of Bn is 1, except the ((2n � 2)=3) þ 1 integers in the set {m: m �3 0,

2n�1 � m � 3(2n�1 � 1) þ 1} that have multiplicity 2:

Proof The edge sums of type (I) edges have multiplicity 1 because each integer in the set

{m: m �3 0, 1 � m � 3(2n�1 � 1) þ 1} is the edge sum of exactly one type (I) edge, while

other edges have their edge sums not congruent to 0(mod 3). Analogously, the edge sums of

type (IV) edges have multiplicity 1. Both, types (II) and (III) edges have edge sums congruent

to 1(mod 3) in the integer intervals [1, 3(2n�1 � 1) þ 1] and [2n�1, 3(2n�1 � 1) þ 2n�1],

respectively. The intersection of those intervals, the set {m: m �3 0, 1 þ 2n�1 � m �

3(2n�1 � 1)}, contains exactly the edge sums with multiplicity 2. j
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