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Abstract

We survey the literature on the eccentricity sequence of a connected graph and make the

following contribution. The eccentricity sequence of a graph G is the list of its eccentricities

in non-increasing order. Two graphs G1 and G2 are co-eccentric when they have the same

eccentricity sequence. Then, we say that G1 and G2 are co-eccentric mates. We characterize

the eccentricity sequence of almost all graphs.
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1. Introduction

A nontrivial connected graph G consists of a finite non-empty set V of n nodes together
with a set E of m unordered pairs of distinct nodes of G called edges. The distance
d(u, v) between two nodes u and v of G is the smallest length of a path connecting u
and v. The eccentricity e(v) of a node v is the maximum distance to another node. The
diameter diam(G) is the largest of its eccentricities. In general, we follow the notation
and terminology of [5].

The eccentricity sequence e-seq(G) of G is the list of its eccentricities in non-increasing
order. Figure 1 shows four graphs of order 4 and their respective eccentricity sequences.

∗The present paper resulted from research carried out between 2002 and 2004. The authors were
concluding the preparation of this manuscript when the sudden death of Prof. Harary, in 2005, interrupted
the process. Daniela Ferrero concluded the revision of the article in 2006.
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(a) 2211 (b) 2221 (c) 2221 (d) 3322

Figure 1: Some graphs and their eccentricity sequences

The discovery of the probabilistic method and its usefulness in solving graph problems
lead to the theory of random graphs. For a positive integer n and a real number p between
0 and 1, the random graph G(n, p) denotes the probability space whose elements are the

2(n
2) different graphs on n nodes. The probabilities are determined under the assumption

that the probability of an edge between any two nodes is an independent event with
probability p. In general, authors take p = 1/2. Basic properties of random graphs can
be found in [4] and earlier in Bollobás [1]and Palmer[10].

2. Survey

A sequence of integers is eccentric if it is the eccentricity sequence of some graph.
Eccentricity sequences of graphs were first studied by Lesniak [7] who also worked on the
characterization of eccentric sequences. Among other properties, in [7] it was presented
the following characterization of eccentric sequences.

Theorem 2.1. [7] A nondecreasing sequence of positive integers S : a1, a2, . . . , ap with m
distinct values is eccentric if and only if some subsequence of S with m distinct values is
eccentric.

Since a subsequence of S may be S itself, this result leads to the concept of minimal
eccentric sequence presented by Nandakumar [9]. An eccentric sequence S : a1, a2, . . . , ap

with m distinct values is minimal if it has no proper eccentric subsequence with m distinct
values. Nandakumar [9] also determined all minimal eccentric sequences with smallest
eccentricity 1 or 2. His result was later extended by Haviar, Hrnciar and Monoszová [6],
who found all the eccentric sequences with smallest eccentricity 3.

Theorem 2.2. [6] The minimal eccentric sequences with minimum eccentricity 3 are
exactly: 36; 35, 42; 34, 44; 33, 46; 32, 48; 3, 410; 3, 42, 512; 3, 43, 59; 3, 44, 57; 3, 45, 54;
3, 47, 52;32, 42, 52 and 3, 42, 52, 62.

For graphs with minimum eccentricity greater than 3 there is a result by Haviar, Hrnciar
and Monoszová [6], which characterizes a class of eccentric sequences.
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Theorem 2.3. [6] All minimal eccentric sequences of the type

rα, (r + 1)β for r ≥ 3 and α + β ≤ min
{

3r − 2,
8r + 5

3

}
are: r2r−1(r+1)2; r2r−2(r+1)4; r2r−2i+1(r+1)3i and r2r−2i(r+1)3i+2 for i = 2, 3, . . . 2r+1

3 .

The study of eccentricity sequences can be simplified when it is restricted to trees. Since
trees have a unique shortest path between any two distinct nodes, the determination of the
eccentricities, and more generally, of distances, becomes simpler. A sequence of integers is
t-eccentric if it is the eccentricity sequence of some tree. A characterization of t-eccentric
sequences was given by Lesniak in [7].

Theorem 2.4. [7] Let S : a1, a2, . . . , ap, p ≥ 3, be a nondecreasing sequence of positive
integers. Then S is t-eccentric if and only if

(i) for each integer k with a1 < k ≤ ap, ai = ai+1 = k for some i, 2 ≤ 2 ≤ n− 1;

(ii) either a1 = an
2 and a1 6= a2 or a1 = a2 = an+1

2 and a2 6= a3.

Caterpillars are a particular class of trees with the property that is all the leaves are
pruned, the resulting tree is a (possibly degenerate) path. Skurnik [12] studied eccentric
sequences corresponding to caterpillars. A sequence of integers is c-eccentric if it is the
eccentricity sequence of some caterpillar.

Theorem 2.5. [12] Let S : a1, a2, . . . , ap, p ≥ 3, be a nondecreasing sequence of positive
integers. If S is t-eccentric, then S is also c-eccentric.

Besides, Skurnik was able to establish the exact number of non-isomorphic caterpillars
having the same eccentric sequence.

Theorem 2.6. [12] Let S : a1, a2, . . . , ap, p ≥ 3, be a nondecreasing sequence of positive
integers such that it is t-eccentric. Let χk be the number of times that the positive integer
k appears in S and let N be the number of non-isomorphic caterpillars whose eccentricity
sequence is S.

(i) If an = 0, then N = 1;

(ii) If an > 2 and even, then N =
⌊

1
2

(
1 + Πan

k=a1+2(χk − 1)
)⌋

.

(iii) If an > 2 and odd, then N =
⌊

1
2

(
1 + Πan

k=a1+1(χk − 1)
)⌋

.
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3. Co-eccentric graphs

Given a graph, it is easy to determine its eccentricity sequence from its distance matrix.
Our object is to approach the converse problem by finding which sequences are eccentric,
and in which cases it is possible to reconstruct a graph from its eccentricity sequence.

For n = 2, there is a unique connected graph on n nodes with eccentricity sequence
11. For n = 3, there are only two connected graphs, the complete graph K3 and the path
P3, which have eccentricity sequences 111 and 122, respectively. However for n = 4, there
are at least two graphs, the graphs (b) and (c) shown in Figure 1, which have the same
eccentricity sequence.

We shall show that for every integer n ≥ 4, there are at least two graphs on n nodes
that have the same eccentricity sequence.

Two graphs G1 and G2 are co-eccentric if and only if e-seq(G1)=e-seq(G2). In that case,
we will also say that G1 and G2 are co-eccentric mates.

A consequence of the use of random graphs is that many results in graph theory assert
that almost all graphs or almost no graphs have a certain property. In order to obtain
a theorem that will imply almost all of those results as corollaries, Blass and Harary [2]
developed a first-order theory of graphs. Certain adjacency axioms were given and shown
to be satisfied by almost all graphs, and it is then proved, that any first-order sentence
about graphs holds in almost all graphs or in almost none.

Theorem A. [2] Let H1 be an induced subgraph of H2. Almost all graphs G have the
property that every isomorphism f1 from H1 onto an induced subgraph of G can be extended
to an isomorphism f2 from H2 onto an induced subgraph of G.

Corollary A. [2] Almost all graphs are connected with diameter 2.

Theorem 3.1. Almost all graphs have eccentric sequence 2i1n−i, for some integer i, 2 ≤
i ≤ n.

Proof. Let G be a graph in G(n, p). From Corollary A it follows that diam(G) = 2.
Therefore, for every node v, either e(v) = 1 or e(v) = 2, but G must have, at least, two
nodes at distance 2, so e− seq(G) = 2i1n−i for some integer i, 2 ≤ i ≤ n.

Conversely, for any integer n ≥ 3, and for every integer i, 2 ≤ i ≤ n, the sequence
2i1n−i is eccentric. To do this, we start by proving the following proposition.

Proposition 3.2. Let G be a graph on n nodes with maximum degree ∆ ≤ n − 2. Let
G + v be the graph obtained by adding a node v to G, and an edge between v and every
node of G. Then e− seq(G + v) = 2n1.

Proof. Obviously e(v) = 1. Since the maximum degree of G is at most n− 2, every node
x of G has e(x) ≥ 2 in G. Since ∆ ≤ n− 2, for any node x in G there exists at least one
node y at distance at least 2 in G. However, since xvy is a path in G′, e(x) = 2 in G′.
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This construction can be extended in order to obtain graphs with eccentricity sequence
2i1n−i, for any integer n ≥ 3 and for any i, 2 ≤ i ≤ n− 1.

Proposition 3.3. Let n be an integer, n ≥ 3. For every integer i, 2 ≤ i ≤ n − 1, there
exists a graph G such that e− seq(G) = 2i1n−i.

Proof. Let G1 be a graph on i nodes with maximum degree not greater than i− 2. Add a
node v1 and an edge between v1 and every node of G1 obtaining a new graph G1 + v1. If
n > i+1, add another node v2 and an edge between v2 and every node of G1+v1, obtaining
a graph G1 + v1 + v2. Repeat this procedure until nodes v1, . . . , vn−i have been added to
G1. Let G = Gn−i + v1, . . . , vn−i. Then, e(vj) = 1, for every j = 1, . . . , n − i. Also note
that since the maximum degree of G is at most i − 2, for any node x in Gn−i which was
originally in G, there exists at least one node y in G1 at distance at least 2, so e(x) ≥ 2.
Besides, since xvy is a path in G, it must be e(x) = 2. Then, e− seq(G) = 2i1n−i.

Finally, we need to study the sequences 2n, for some integer n.

Proposition 3.4. For every integer n ≥ 4, there exists a graph G such that e− seq(G) =
2n.

Proof. It is enough to observe that e− seq(K2,n−2) = 2n.

In the next part of this paper we deal with the characterization of those eccentric
sequences corresponding to more than one graphs.

Proposition 3.5. Let n be an integer, n ≥ 3. For every integer i, 3 ≤ i ≤ n−1, there exist
at least two graphs G1 and G2 such that e− seq(G1) = 2i1n−i and e− seq(G1) = 2i1n−i.

Proof. Let G be a graph on i nodes with maximum degree not greater than i − 2. As
it was done in the proof of Proposition 3.3, we add a nodes and edges in G, obtaining a
new graph G1 = G + v1 . . . vn−i, such that e− seq(G1) = 2i1n−i. Notice that since 3 ≤ i,
there exist at least two different graphs on i nodes with maximum degree not greater than
i− 2. If we repeat the procedure with a graph on i nodes different from G, we will obtain
a graph G2 different from G1, but also with e− seq(G2) = 2i1n−i.

Observe that in the previous result we need the condition i ≥ 3, because if i = 2 there
is only one graph on i nodes with degree at most i− 2.

Proposition 3.6. Let n be an integer, n ≥ 3. Then, e− seq(Kn − e) = 221n−2, and this
is the only graph with eccentricity sequence 221n−2.

Proof. It is easy to see that e− seq(Kn − e) = 221n−2. Reciprocally, let G be a graph on
n nodes with e− seq(G) = 221n−2. Then, there exist exactly two nodes in G, let us say u
and v, such that d(u, v) = 2. Therefore, if we add the edge e = uv to G, we must obtain
the complete graph. As a consequence, G must be Kn − e.
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The remaining eccentric sequence to be discussed is 2n, for n ≥ 4. It is simple to check
that the only graph on 4 nodes with eccentricity sequence 24 is the cycle C4. However,
this is the only value of n for which the sequence 2n is associated to a unique graph. In
Figure 2 we show two graphs, G′

1 and G′
2, on 5 nodes with eccentricity sequence 25.

Proposition 3.7. For every integer n, n ≥ 5, there exist at least two graphs with eccen-
tricity sequence 2n.

Proof. Notice that e − seq(K2,n−2) = 2n. If n > 5, then K3,n−3 6= K2,n−2 and e −
seq(K3,n−3) = 2n. If n = 5, e− seq(K2,3) = 25 and also e− seq(K2,3 + e) = 25.
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Figure 2: Two graphs with eccentric sequence 25.

4. Conclusions

We have shown that almost all graphs on n nodes have eccentricity sequence of the form
2i1n−i for some integer i, 2 ≤ i ≤ n, and we have also answered two questions in relation
to the converse statement:

• For which values of the integers n and i is the sequence 2i1n−i eccentric?

• For which values of the integers n and i there exist multiple graphs with eccentricity
sequence 2i1n−i?

Summarizing our results, the values of the integers n and i for which the sequence 2i1n−i

is eccentric are:

n ≥ 3 2 ≤ i ≤ n− 1 Proposition 3.3
n ≥ 4 i = n Proposition 3.4

The values of the integers n and i for which there are at least two graphs with eccentricity
sequence 2i1n−i are:
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n ≥ 3 3 ≤ i ≤ n− 1 Proposition 3.5
n ≥ 5 i = n Proposition 3.7

The values of the integers n and i for which there is a unique graph with eccentricity
sequence 2i1n−i are:

n = 3 i = 2 Path P3

n ≥ 4 i = 2 Proposition 3.6
n ≥ 4 i = 4 Cycle C4

5. Open Problems

Constructive characterization of eccentricity sequences.

Characterize the eccentric sequences corresponding to unique graphs with diameter
greater than 2.

Related results and open problems were presented by Buckley [1, 3], Harary [3], Mc-
Dougal [8] and Prisner [11].
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