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Abstract

Iterated line digraphs have some good properties in relation to the design of interconnec-
tion networks. The diameter vulnerability of a digraph is the maximum diameter of the sub-
digraphs obtained by deleting a ,xed number of vertices or arcs. This parameter is related to
the fault-tolerance of interconnection networks. In this work, we introduce some new parame-
ters in order to ,nd new bounds for the diameter vulnerability of general iterated line digraphs.
c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Interconnection networks are usually modeled by graphs. The switching elements or
processors are represented by vertices. The communication links are represented by
edges (if they are bidirectional) or arcs (if they are unidirectional). In this work, we
are only concerned with directed graphs called digraphs, for short. Some basic concepts
we use in this work are recalled in Section 2. For additional concepts, we refer the
reader to [1].
Some basic requirements in designing interconnection networks make interesting to

,nd large digraphs with bounded degree, small diameter and easy routing. Because
of the compromise between the parameters involved — order, maximum degree and
diameter — this situation gives rise to some optimization problems. One of them is
the (d;D)-digraph problem, that is, to ,nd digraphs with order as large as possible
for ,xed values of the maximum degree d and the diameter D. The iteration of the
line digraph operator is a powerful technique in order to ,nd large (d;D)-digraphs,
that is, digraphs with degree d and diameter D [5]. In fact, the best proposed general
solutions to the (d;D)-digraph problem, such as de Bruijn and Kautz digraphs, the
bipartite digraphs proposed by Fiol and Yebra [4] and the generalized cycles proposed
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in [6], are iterated line digraphs. Besides, iterated line digraphs have other interesting
properties in relation to the design of interconnection networks: for instance, properties
related to the connectivity and the existence of Hamilton cycles. Besides, it is possible
to construct very simple routing algorithms on iterated line digraphs.
Other requirement for an interconnection network is that the system still works with

reasonable eCciency when some elements are faulty. That is, the network must be
fault-tolerant. The connectivity, which is the minimum number of vertices or arcs
whose deletion disconnects the digraph, and the diameter vulnerability, are parameters
related to the fault tolerance of a network.
The diameter vulnerability of a digraph is the maximum of the diameters of the

subdigraphs obtained by deleting a given number of vertices or arcs. In this paper, we
consider the diameter vulnerability of iterated line digraphs, that is, digraphs de,ned
by the iteration of the line digraph operator. The diameter vulnerability of some inter-
esting particular families of iterated line digraphs has been calculated in [9,11,3]. The
diameter-vulnerability of general iterated line digraphs was ,rst considered in [10]. It
was proved there that, if an iterated line digraph Lk(G) has maximum connectivity,
its diameter vulnerability is bounded by D(Lk(G)) + C, where C depends on some
properties of the digraph G, but does not depend on the number of iterations.
We introduce new parameters in order to ,nd new bounds on the diameter vulner-

ability of iterated line digraphs. In general, the bounds we present here are not only
tighter than the ones given in [10], but improve them in some other aspects. First of
all, the bounds we present here do not need Lk(G) to be maximally connected to be
applied. Besides, instead of dealing only with the worst case, that is, when the number
of faulty elements is just one unity less than the connectivity, our bounds depend on
the number of faulty elements. Finally, the bounds given in [10] can take diGerent
values when they are computed for H1 =Lk(G) or for H2 =Lk

′
(Lk−k′(G)), being these

two digraphs isomorphic. The bounds we present in this paper avoid this problem.
In the next section, we present the most relevant de,nitions and the notation we are

going to use in the following. In Section 3, we introduce the new parameters and their
main properties. We present bounds for the diameter vulnerability in Section 4, and
we apply them to some interesting families of digraphs in Section 5.

2. De�nitions and notation

A digraph G=(V; A) consists of a set of vertices V and a set A of ordered pairs of
vertices called arcs. The arcs in the form (x; x) are called loops. The cardinality of V
is the order of the digraph. If (x; y) is an arc, it is said that x is adjacent to y and that
y is adjacent from x. The set of vertices which are adjacent from (to) a given vertex v
is denoted by �+(v) (�−(v)) and its cardinality is the out-degree of v, d+(v)= |�+(v)|
(in-degree of v, d−(v)= |�−(v)|). Its minimum value over all vertices is the minimum
out-degree, �+, (minimum in-degree, �−) of the digraph G. The minimum degree of
G is �=min{�+; �−}. The maximum degree � is de,ned analogously.
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A path of length h from a vertex x to a vertex y is a sequence of vertices x =
x0; x1; : : : ; xh−1; xh = y where (xi; xi+1) is an arc. A digraph G is strongly connected if
for any pair of vertices x; y there exists a path from x to y. The length of a shortest path
from x to y is the distance from x to y, and it is denoted by d(x; y). Its maximum
value over all pairs of vertices is the diameter of the digraph, D(G). If G is not
strongly connected, D(G) =∞.
Let x and y be two diGerent vertices of a digraph G. If the shortest path from x

to y is unique, it will be denoted by x → y. Its ,rst vertex after x will be v(x → y)
and its last one before y will be v(y ← x). Now, if F is a set of vertices of G and
x �∈ F , v(x → F) is the set formed by v(x → f) for every vertex f ∈ F , such that
the shortest path from x to f is unique, and v(x ← F) is de,ned analogously. Thus,
v(x → F)⊂�+(x) and v(x ← F)⊂�−(x).

The vertex-connectivity �=�(G) of a digraph G=(V; A) is the minimum cardinality
of the subsets of vertices F ⊂V such that G−F is not strongly connected or is trivial.
The arc-connectivity �=�(G) is the minimum number of arcs whose deletion produces
a subdigraph of G that is not strongly connected. The s-vertex-diameter-vulnerability,
K(s; G), of a digraph G is the maximum of the diameters of the subdigraphs obtained
by removing at most s vertices from G. The s-arc-diameter-vulnerability, �(s; G), is
de,ned analogously. These parameters are related to the diameter and the connectivity.
By the de,nition, K(0; G) and �(0; G) coincide with the diameter of G. The connectiv-
ities of a non-complete digraph G are the minimum values of s satisfying K(s; G)=∞
and �(s; G) =∞. That is,

D(G) = K(0; G)6K(1; G)6 · · ·6K(� − 1; G)¡K(�; G) =∞;

D(G) = �(0; G)6�(1; G)6 · · ·6�(�− 1; G)¡�(�; G) =∞:

In the line digraph L(G) of a digraph G each vertex represents an arc of G, that is,
V (L(G))={uv | (u; v) ∈ A(G)}. Vertex uv is adjacent to vertex wz if v=w, i.e., when-
ever the arc (u; v) of G is adjacent to the arc (w; z). The iteration of the line digraph
operation is a good method to obtain large digraphs with ,xed degree and diameter. If
G is d-regular with d¿ 1, has diameter D and order n, then Lk(G) is d-regular, has
diameter D+ k and order dkn, that is, the order increases in an asymptotically optimal
way in relation to the diameter. The vertices of the iterated line digraph Lk(G) can
be represented by walks of length k in G, that is, sequences of k + 1 vertices of G,
x0x1 : : : xk , where (xi; xi+1) is an arc of G. A vertex x= x0x1 : : : xk in Lk(G) is adjacent
to y = x1 : : : xkxk+1 for all xk+1 adjacent from xk . A path of length h in Lk(G) can be
written as a sequence of k + h + 1 vertices of G. The vertices of this path are the
subsequences of k + 1 consecutive vertices of G.

3. Parameters M�;r and ‘�;r

In order to ,nd bounds on the diameter vulnerability of iterated line digraphs, we
are going to prove that, under certain conditions, for any given set F of faulty vertices
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and for any pair of vertices x; y �∈ F , it is possible to ,nd a path from x to y with
bounded length and avoiding F . This path will be in the form xx1 : : : xm : : : yn : : : y1y,
where xm and yn are vertices such that d(xm; f)+d(f; yn)¿D(G) for any f ∈ F . It is
constructed recursively in such a way that the distances d(xi; f) and d(f; yi) increase
with i. We introduce in this section the parameters M#;r and ‘#;r , which are related
to the properties of short paths between the vertices of the digraph. These parameters
will enable us to ,nd the vertices xi and yi together with the values of m and n such
that d(xm; f) + d(f; yn)¿D(G) for any f ∈ F .

De�nition 3.1. Let G be a digraph with minimum degree �¿2 and diameter D =
D(G). Let # be an integer, 06#6�− 2. For any positive integer r, we de,ne ‘#;r =
‘#;r(G) as the greatest integer, 06‘#;r6D, such that for each vertex x there exist sets
&+

#;r(x)⊂�+(x), &−
#;r(x)⊂�−(x), with |&+

#;r(x)|; |&−
#;r(x)|6#, satisfying:

(1) if d(x; y)¡‘#;r , there is only one shortest path from x to y and any other path
with length smaller than or equal to d(x; y) + r has its ,rst vertex in &+

#;r(x) and
its last one in &−

#;r(y).
(2) if d(x; y) = ‘#;r , the shortest path from x to y is unique.

This parameter is a generalization of the parameters ‘0 [2] and ‘∗1 [10]. In fact,
‘0;1(G) = ‘0(G) and ‘1;1(G) = ‘∗1 (G). In next lemma we see how the parameter ‘#;r
and the sets &+

#;r(x) and &−
#;r(x) can be used to ,nd a vertex x1 ∈ �+(x) that avoids

the short paths from a vertex x to any other vertex y.

Lemma 3.2. Let G be a digraph with minimum degree �¿2; and ‘#;r = ‘#;r(G) for
an integer # with 06#6�− 2 and a positive integer r. If x; y are two vertices of G;
then

(1) If d(x; y)¡‘#;r:
(a) for all x1 ∈ �+(x)− &+

#;r(x) such that x1 �= v(x → y); d(x1; y)¿d(x; y) + r.
(b) for all y1 ∈ �−(y)−&−

#;r(y) such that y1 �= v(y ← x); d(x; y1)¿d(x; y) + r.
(2) If d(x; y) = ‘#;r:

(a) for all x1 ∈ �+(x)− {v(x → y)}; d(x1; y)¿‘#;r .
(b) for all y1 ∈ �−(y)− {v(y ← x)}; d(x; y1)¿‘#;r .

Proof: If d(x; y)¡‘#;r , x1 �∈ &+
#;r(x) and x1 �= v(x → y), then, the length of any path

xx1 : : : y is greater than d(x; y) + r. Therefore, d(x1; y)¿d(x; y) + r. In the same way,
d(x; y1)¿d(x; y) + r.
If d(x; y) = ‘#;r the shortest path from x to y is unique. A shortest path from x1 �=

v(x → y) to y determines a path from x to y. Then, d(x1; y)+1¿d(x; y)+1=‘#;r+1.
Analogously, d(x; y1)¿‘#;r .
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As a direct consequence of Lemma 3.2, we obtain the following result.

Lemma 3.3. Let G be a digraph with minimum degree �¿2; and let ‘#;r = ‘#;r(G);
where 06#6�− 2. Let F be a set of vertices of G with 16|F |6�− #− 1; and x; y
two vertices of G; x; y �∈ F . Then; for every m¿1;

(1) there exists a path xx1 : : : xm such that; for all f ∈ F; d(xm; f)¿min{d(x; f) +
rm; ‘#;r}.

(2) there exists a path ym : : : y1y such that; for all f ∈ F; d(f; ym)¿min{d(f; y) +
rm; ‘#;r}.

The properties of the parameter ‘#;r in relation to the line digraph operator are given
by the next two propositions.

Proposition 3.4. Let G be a digraph with minimum degree �¿2. Let # and r¿1 be
integers such that 06#6�− 2 and ‘#;r(G)¿1. Then;

(1) ‘#;r(L(G)) = ‘#;r(G) + 1.
(2) For any vertex x = x0x1 of L(G); &+

#;r(x) = {x1w |w ∈ &+
#;r(x1)} and &−

#;r(x) =
{ux0 | u ∈ &−

#;r(x0)}.

Proof: Let x = x0x1 and y = y0y1 be two diGerent vertices of L(G). If dL(G)(x; y)6
‘#;r(G) + 1, then dG(x1; y0)6‘#;r(G) and there is only one shortest path from x1 to
y0 in G. Therefore, in L(G), the shortest path from x to y is unique. Let us consider
&+

#;r(x1) = {w1; : : : ; ws} and &−
#;r(y0) = {u1; : : : ; ut}, where 16s; t6#. If dL(G)(x; y)¡

‘#;r(G) + 1, then dG(x1; y0)¡‘#;r(G) and any non-shortest path from x1 to y0 with
length at most d(x1; y0)+ r has its ,rst vertex in &+

#;r(x1) and its last one in &−
#;r(y0).

Therefore, all non-shortest paths from x to y with length at most d(x; y)+ r have their
,rst vertices in&+

#;r(x)={x1w1; : : : ; x1ws} and their last ones in &−
#;r(y)={u1y0; : : : ; uty0}.

If x = y = x0x1, and there is a cycle xx1 : : : xh−1x with length h6r, then, there is a
cycle C = x0x1x2 : : : xh−1x0 in the digraph G. Since ‘#;r(G)¿1, we have x2 ∈ &+

#;r(x1)
and xh−1 ∈ &−

#;r(x0). Then x1 = x1x2 is in &+
#;r(x), and xh−1 = xh−1x0 is in &−

#;r(x).
Therefore, ‘#;r(L(G))¿‘#;r(G) + 1.
On the other hand, from the de,nition of ‘#;r(G), there exist vertices x, y of G such

that

(1) d(x; y) = ‘#;r(G) and there exists a non-shortest path from x to y with length at
most d(x; y) + r such that its ,rst vertex is not in &+

#;r(x) or its last one is not in
&−

#;r(y); or
(2) d(x; y) = ‘#;r(G) + 1 and there exist two diGerent shortest paths from x

to y.
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Since �¿2, there exist vertices x0, y1 of G such that x = x0x and y = yy1 satisfy
d(x; y) = d(x; y) + 1. Then,

(1) d(x; y) = ‘#;r(G) + 1 and there exists a non-shortest path from x to y with length
at most d(x; y)+ r such that its ,rst vertex is not in &+

#;r(x) or its last one is not
in &−

#;r(y); or
(2) d(x; y) = ‘#;r(G) + 2 and there exist two diGerent shortest paths from x to y.

Therefore, ‘#;r(L(G))6‘#;r(G) + 1.

Proposition 3.5. Let G be a digraph with minimum degree �¿2. Let # and r¿1 be
integers such that 06#6�− 2 and ‘#;r(G)¿1. Then; for any integer k¿1;

(1) ‘#;r(Lk(G)) = ‘#;r(G) + k.
(2) For any vertex x = x0x1 : : : xk of Lk(G); &+

#;r(x) = {x1 : : : xkw |w ∈ &+
#;r(xk)} and

&−
#;r(x) = {ux0 : : : xk−1 | u ∈ &−

#;r(x0)}.

Proof: This result is a direct consequence of Proposition 3.4.

De�nition 3.6. Let G be a digraph with minimum degree �¿2. Let # be an integer
with 06#6�−2 and r a positive integer such that ‘#;r(G)¿1. A (#; r)-double detour
is a set of four paths {C1; C′

1; C2; C′
2} such that

• C1 and C′
1 are paths from x to f, with lengths s and s′, respectively, where s′¿s

and s′¿1. C2 and C′
2 are paths from f to y, with lengths t and t′, respectively,

where t′¿t and t′¿1. Besides, max{s; t}¿1.
• If (x; x′1) is the ,rst arc of C′

1, then x′1 �∈ &+
#;r(x). If s �= 0 and (x; x1) is the ,rst arc

of C1, then x′1 �= x1.
• If (y′

1; y) is the last arc of C′
2, then y′

1 �∈ &−
#;r(y). If t �= 0 and (y1; y) is the last

arc of C2, then x′1 �= x1.

The length of a (#; r)-double detour is de,ned to be s′ + t′. We de,ne M#;r(G) as the
minimum length of a (#; r)-double detour in G.

Proposition 3.7. For any digraph G; M1;1(G)¿4; and M0;1(G)¿4 if G is loopless.

Proof: Observe that ‘1;1(G)¿1 for any digraph G. In eGect, it is enough to consider
&+

1;1(x) = &−
1;1(x) = {x} for any vertex x such that the loop (x; x) is an arc of G. Let

{C1; C′
1; C2; C′

2} be a (1; 1)-double detour in G. The paths C′
1 and C′

2 have length at
least 2, even if C1 or C2 have length 0. Therefore, the length of any (1; 1)-double detour
is at least 4. Equally, ‘0;1(G)¿1 for any loopless digraph G. Obviously, &+

0;1(x) =
&−

0;1(x) = ∅. It is not diCcult to check that the length of any (0; 1)-double detour is at
least 4 in any loopless digraph G.

Proposition 3.8. Let G be a digraph with minimum degree �¿2. Let # be an integer
with 06#6�−2 and r a positive integer such that ‘#;r(G)¿1. Then; for any positive
integer k; M#;r(Lk(G)) =M#;r(G) + k.
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Proof: Since Lk(G)= L(Lk−1(G)), it is enough to prove the proposition for k =1. Let
{C1; C′

1; C2; C′
2} be a (#; r)-double detour in L(G) with length s′ + t′, where C1 and

C′
1 are paths from x = x0x1 to f = f0f1 and C2 and C′

2 are paths from f = f0f1 to
y= y0y1. We may assume that s¿1. Let us consider in G the paths {C1;C′

1;C2;C′
2},

where C1 and C′
1 are the paths from x1 to f0 that are obtained, respectively, from C1

and C′
1. The ,rst arcs of C1 and C′

1 are diGerent and, by Proposition 3.4, the second
vertex of C′

1 is not in &+
#;r(x1). Equally, one obtains from C2 and C′

2 the paths C2 and
C′

2 from f0 to y0 (if t = 0, then f0 = y0 and C2 is also a path with length 0). As
before, the last but one vertices of C2 and C′

2 are diGerent and the last but one vertex
of C′

2 is not in &−
#;r(y0). Therefore, we have found a (#; r)-double detour in G with

length s′ + t′ − 1.
Therefore, if there is a (#; r)-double detour in L(G) with length s′ + t′, then there

exists a (#; r)-double detour in G with length s′ + t′ − 1. On the other hand, If there
exists a (#; r)-double detour in G with length h, formed by paths between the vertices
x1 and y0, the corresponding paths from x0x1 to y0y1 form a (#; r)-double detour in
L(G) with length h+ 1.

Lemma 3.9. Let G be a digraph with minimum degree �¿2. Let # and r¿1 be
two integers with 06#6� − 2 and ‘#;r(G)¿1. Let x; y; f be any three vertices. If
x1 ∈ �+(x) − &+

#;r(x); x1 �= v(x → f) and y1 ∈ �−(y) − &−
#;r(y); y1 �= v(y ← f);

then d(x1; f) + d(f; y1)¿M#;r(G)− 2.

Proof: Since x1 �∈ &+
#;r(x), x1 �= v(x → f) and y1 �∈ &−

#;r(y), y1 �= v(y ← f), we
can consider a (#; r)-double detour in G with C1 a shortest path from x to f, C2 a
shortest path from f to y, C′

1=xx1 : : : f and C′
2=f : : : y1y. Then, M#;r(G)6d(x1; f)+

d(f; y1) + 2.

The following result can be proved analogously.

Lemma 3.10. Let G be a digraph with minimum degree �¿2. Let # and r¿1 be
two integers with 06#6� − 2 and ‘#;r(G)¿1. Let x; y be two vertices and (f; g)
an arc. Let us consider x1 ∈ �+(x)− &+

#;r(x) such that x1 �= v(x → f) if x �= f and
x1 �= g if x = f; and y1 ∈ �−(y) − &−

#;r(y) such that y1 �= v(y ← g) if y �= g and
y1 �= f if y = g. Then; d(x1; f) + d(g; y1)¿M#;r − 3.

4. The bounds

In this section we present upper bounds for both, vertex and arc-diameter vulnera-
bility of iterated line digraphs, making use of the results of Section 3.

Theorem 4.1. Let G be a digraph with minimum degree �¿2 and diameter D=D(G).
Let #; r be a pair of integers such that 06#6�−2; r¿1 and ‘#;r=‘#;r(G)¿1. Let
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us consider M#;r =M#;r(G). Then; for any integer k such that k¿D − 2‘#;r + 1; the
s-vertex-diameter-vulnerability of Lk(G) veri�es

K(s; Lk(G))6D(Lk(G)) + C

for any s= 1; : : : ; �− #− 1; where

C =max
{⌈

D −M#;r + 3 + 2r
r

⌉
; 2

⌈
D − ‘#;r

r

⌉}
:

Proof: Let F be a non-empty set of faulty vertices of Lk(G), |F |= s6�− #− 1. Let
x, y be two diGerent vertices of Lk(G) which are not in F . As |F |6�− # − 1, there
exist x1 ∈ �+(x) − &+

#;r(x) − v(x → F) and y1 ∈ �−(y) − &−
#;r(y) − v(y ← F). By

Proposition 3.8 and Lemma 3.9,

d(x1; f) + d(f; y1)¿M#;r + k − 2

for all f ∈ F . By Lemma 3.2 and Proposition 3.5, for any f ∈ F ,

d(x1; f)¿min{d(x; f) + r; ‘#;r + k}:
Equally,

d(f; y1)¿min{d(f; y) + r; ‘#;r + k}
for all f ∈ F . By Lemma 3.3, for any pair of integers m, n, there exist paths x1x2 : : : xm
and yn : : : y2y1, with xi; yi �∈ F , such that, for any f ∈ F ,

d(xm; f)¿min{d(x1; f) + r(m− 1); ‘#;r + k}
and

d(f; yn)¿min{d(f; y1) + r(n− 1); ‘#;r + k}
Let us consider m and n such that mr; nr¿D − ‘#;r and

m+ n=max
{⌈

D −M#;r + 3 + 2r
r

⌉
; 2

⌈
D − ‘#;r

r

⌉}
:

By combining the inequalities above and taking into account that k¿D− 2‘#;r + 1, it
is not diCcult to check that d(xm; f) + d(f; yn)¿D + k + 1 = D(Lk(G)) + 1 for any
f ∈ F . Then, a shortest path from xm to yn does not contain any vertex in F . Therefore,
we have found a path from x to y with length at most D + k + m + n = D + k + C
avoiding F .

Bounds on the arc-diameter-vulnerability are found in a similar way.

Theorem 4.2. Let G be a digraph with minimum degree �¿2 and diameter D=D(G).
Let #; r be a pair of integers such that 06#6� − 2; r¿1 and ‘#;r = ‘#;r(G)¿1.
Let us consider M#;r =M#;r(G). Then; for any integer k such that k¿D − 2‘#;r ; the
s-arc-diameter-vulnerability of Lk(G) veri�es

�(s; Lk(G))6D(Lk(G)) + C
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for any s= 1; : : : ; �− #− 1; where

C =max
{⌈

D −M#;r + 3 + 2r
r

⌉
; 2

⌈
D − ‘#;r

r

⌉}
:

Proof: Let F be a non-empty set of faulty arcs of Lk(G), F = {e1; : : : ; es}, where
16s6� − # − 1 and ei = (fi; gi) for i = 1; : : : ; s. Let us consider the sets of vertices
F = {f1; : : : ; fs} and G= {g1; : : : ; gs}. Let x, y be two diGerent vertices of Lk(G) and
consider F1 = F − {x} and G1 =G− {y}. Since |F|6�− #− 1, there exists a vertex
x1 ∈ �+(x) − &+

#;r(x) such that x1 �= v(x → F1) and x1 �= gi if x = fi. Equally, there
exists a vertex y1 ∈ �−(y)−&−

#;r(y) such that y1 �= v(y ← G1) and y1 �= fi if y=gi.
Observe that x1 �∈ F and y1 �∈ G. By Proposition 3.8 and Lemma 3.10,

d(x1; f) + d(g; y1)¿M#;r + k − 3

for any arc (f; g) ∈F. Applying now Lemma 3.2 and Proposition 3.5, we have

d(x1; f)¿min{d(x; f) + r; ‘#;r + k}
for any f ∈ F (it is possible that d(x; f) = 0). Equally,

d(g; y1)¿min{d(g; y) + r; ‘#;r + k}
for any g ∈ G. From Lemma 3.3, for any pair of integers m, n, there exist paths
x1x2 : : : xm and yn : : : y2y1 such that

d(xm; f)¿min{d(x1; f) + r(m− 1); ‘#;r + k}
for any f ∈ F and

d(g; yn)¿min{d(g; y1) + r(n− 1); ‘#;r + k}
for any g ∈ G. Let us consider the same values of m and n as in the proof of
Theorem 4.1. It is not diCcult to check that d(xm; f) + d(g; yn)¿D + k = D(Lk(G))
for any arc (f; g) ∈ F. Then, a shortest path from xm to ym cannot contain any arc
in F. Therefore, there exists a path xx1 : : : xm : : : yn : : : y1y from x to y with length
at most D(Lk(G)) + m+ n that avoids the set of faulty arcs F.

Theorems 4.1 and 4.2 in [10] are a consequence of Proposition 3.7 and the following
corollary, which is proved by taking #= 1 and r = 1 in the previous theorems

Corollary 4.3. Let G be a digraph with minimum degree �¿ 2; diameter D = D(G)
and ‘1;1 = ‘1;1(G) = ‘∗1 (G). Then;

• K(s; Lk(G))6D(Lk(G)) + C; if k¿D − 2‘1;1 + 1;

• M(s; Lk(G))6D(Lk(G)) + C; if k¿D − 2‘1;1

for s= 1; : : : ; �− 2; where C =max{D −M1;1 + 5; 2(D − ‘1;1)}.

If we take # = 0 and r = 1, we obtain the following result, from which Theorems
3:1 and 3:2 in [10] follow.



112 D. Ferrero, C. Padr+o /Discrete Mathematics 233 (2001) 103–113

Corollary 4.4. Let G be a digraph without loops and with minimum degree �¿2;
diameter D = D(G) and ‘0;1 = ‘0;1(G) = ‘0(G). Then;

• K(s; Lk(G))6D(Lk(G)) + C; if k¿D − 2‘0;1 + 1;

• �(s; Lk(G))6D(Lk(G)) + C; if k¿D − 2‘0;1

for s= 1; : : : ; �− 1; where C =max{D −M0;1 + 5; 2(D − ‘0;1)}.

5. Applications

A generalized p-cycle is a digraph whose set of vertices is partitioned in p parts
that are cyclically ordered in such a way that the vertices in one part are only adja-
cent to vertices in the next cycle. The Kautz generalized cycles KGC (p; d; dp+k +dk)
were proposed in [6] as a solution to the (d;D)-problem restricted to generalized
cycles. It was proved there, that if 2p − 16D63p − 2, the order of the digraph
KGC (p; d; dp+k + dk) is the largest that a p-cycle could have with degree d and
diameter D. This family is also a generalization of other models for interconnec-
tion networks. For example, K(d;D), the Kautz digraph of degree d and diameter
D is the same as KGC (1; d; dD + dD−1). Also the generalized Kautz or Imase–
Itoh digraph [7,8], GK(d; n), can be de,ned as KGC (1; d; n). The bipartite digraphs
BD(d; n) introduced in [4] for the (d;D)-problem over bipartite digraphs, coincides
with KGC (2; d; dD−p+1 + dD−2p+1).

The diameter-vulnerability of some particular families of Kautz generalized cycles
has been calculated by ,nding disjoint paths between any pair of vertices. For example,
for the de Bruijn and Kautz digraphs [9], the bipartite digraphs BD(d; n) [11] and in
general, for the digraphs KGC (p; d; dp+k + dk) [3].
The Kautz generalized cycles are iterated line digraphs. More exactly, KGC

(p; d; dp+k +dk)=Lk(KGC (p; d; dp+1)). The digraph KGC (p; d; dp+1) has diam-
eter D = 2p− 1 and parameters M0;p−1 = 2p+ 2, ‘0;p−1 = p (we refer the reader to
[6,3] for details). With these values, the bound in [10] is

K(s;KGC (p; d; dp+k + dk)); �(s;KGC (p; d; dp+k + dk))6D(Lk(G))+4(p−1)

for s= 1; : : : ; d− 1. Instead, by the results obtained in Section 4:

K(s;KGC (p; d; dp+k + dk)); �(s;KGC (p; d; dp+k + dk))6D(Lk(G)) + 2

for s = 1; : : : ; d − 1. These bounds coincide with the exact values given in [11,3] for
the diameter vulnerability of BD(d; n) and KGC (p; d; dp+k + dk), respectively.
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