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Abstract 

 
  Stream ciphering devices seem to be one of the best alternatives in order to provide 
confidentiality to high-speed transmissions. 
  Several indexes on the security of stream ciphers have been proposed for guaranteeing 
their strength.  According to the literature, linear complexity of the key stream, randomness 
and correlation immune attacks are of great importance.  But the proposed indexes are not 
sufficient to guarantee the security of stream ciphers.  It is possible that sequences with a 
high linear complexity have a very bad “linear complexity stability”, i.e., after changing a 
few bits of the original sequence, its linear complexity decreases or increases fast.  In this 
case, a BAA attack (Best Affine Approximation) could be very successful; the sequences 
may be very well approximated by another one with very lower linear unpredictability.  
This problem is especially important when linear feedback shift registers are used.  To 
solve this problem, non-linear next state functions are the possible solution.  This paper 
shows some techniques in order to analyse non-linear functions with maximum period and 
to set necessary conditions. 
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1. Introduction 
  
  The recent growth of multimedia services and supercomputing applications has led to a need for high speed 
networks which can carry all fundamental media streams: data, voice and video. The Asynchronous Transfer Mode 
(ATM) is the most promising technique for high speed networks in the near future, for the public WANs, the Broadband 
Integrated Services Digital Network (B-ISDN) and also private local networks like ATM LANs. 
  Some applications and services for both scenarios require security services. First, it is necessary to control the 
access of users to the resources by means of smart cards, passwords, fingerprints, etc.. Mutual authentication is also 
required for communications over the network, between clients and servers. We have to follow an authentication 
protocol that uses some encryption mechanisms in order to achieve this authentication. Some applications can also 
negotiate session keys during or after the authentication that can later be used to cipher the communication, providing 
integrity and/or confidentiality. 
  The services of integrity and confidentiality must be applied for the bulk of the information. So, we need fast 
ciphering mechanisms for high-speed networks. With today's technology, hardware implementations of stream ciphers 
seem to be the best choice to encrypt at a rate of hundreds of Mbits/sec, and thus be compatible with high-speed 
networks. 
  In the next section, the use of structures with a non-linear feedback is justified.  In the third section, we propose 
an algorithm to characterise the non-linear functions by means of which the shift registers present the maximum period.  
And finally, we present other results obtained when the problem is seen from the graph theoretical point of view. 
 

2. Linear feedback versus non-linear feedback 
 
  The typical structure of a stream cipher is the shown in figure: 
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  As can easily be seen, this probability is very close to 1 when m is large enough. In consequence, when a linear 
next state function is used (linear feedback), due to the predictability of the states evolution, there is a commitment in 
the output sequence. If a high order of correlation immunity is desired, the output sequence can be very well 
approximated by a sequence linearly generated. 
  Nevertheless, the situation differs when a non-linear feedback function is used. In this case, the state evolution of 
the generator cannot be predicted. If the non-linear feedback function is approximated by its BAA, every time that a 
difference is done, a propagation error process is done because the actual state of the generator is different to the 
foreseen. 
 
 

3. Non-linear feedback function analysis 
 
  In this section, we will analyse the features of the feedback functions associated to the FSR (Feedback Shift 
Registers) that originate maximum period sequences, called DeBruijn sequences.  They have excellent statistical 
properties, which permits their use in a large variety of applications, from random bit generation to criptography. 
  The DeBruijn sequences originally arise from the teleprinter’s problem. 
 
Definition: A DeBruijn sequence of order L is a cyclic sequence such that each subsequence of L symbols appears 

exactly once.  
 
  Since there are 2L distinct L-tuples formed from 0 and 1, the sequence is n=2L bits long.  It is not difficult to see 
that the alphabet size needs not be 2.  It could be any number m.  In that case, the maximum-length sequence is mL 
symbols long.  We will concentrate the study on the binary case for simplicity and practical reasons. 

  It is well known that the number of all the different DeBruijn sequences of order L is  [BRUI 46].  These 
sequences are usually generated by FSR.  Each DeBruijn sequence has associated a different feedback function. 

L2 1L

2 −−

  Let L denote the length of the FSR (it will also be the order of the DeBruijn sequence generated).  The sequence 
bits will be calculated from lower to higher index, i.e. sk = f (sk-1,...,sk-L), where f(·) is the feedback function.  The vector 
of the register will be denoted as this:  xL-1...x1x0. The most significant bit (MSB) will be the (L-1)-th bit and the LSB 
will correspond to the 0 tap of the FSR. 
  When the register is in the xL-1...x1x0 state, the next state will be the vector xL-1...x1x0, where  xi = xi+1 for every i 
from 0 to L-2, and xL-1 is calculated with the expression given by f(·).  Graphically, 
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  By representing the feedback functions in algebraic normal form 

1L10x...xx20xx2x10xx1x0x11L10 x...xxc...xxcxcxxcxcxc1c)x,...,x,x(f
1L102021010 −− −

⊕⊕⊕⊕⊕⊕⊕=  
some interesting properties can be deduced assuming the period to be maximum: 
 
Properties of the maximum-period feedback sequences 
 
a) The 1 term always appears 
b) The number of terms is even 
c) )x,...,x(gx)x,...,x,x(f 1L101L10 −− ⊕=  
d) There is symmetry between the xi and the xL-i variables 
e) At least there is one 0c

ix =  
 
Proofs 
 
a) The 100...0 state must follow the 00...0 state.  In other words, ( ) 10 =f

r
 

1c11c)0,...,0,0(f 11 =⇒==  
 
b) Similar to (a), the 011...1 state must follow the 11...1 state, i.e. ( ) 01 =f

r
 

1cofnumberevenanareThere0c...ccccc)1,...,1,1(f i
i

ixxxxx1 21010
=⇒==⊕⊕⊕⊕⊕= ∑  

By the same reason, since there are 2L coefficients, there are also an even number of ci = 0. 
 
c) Each state must only have one predecessor.  Golomb [GOLO 67] showed that this property (of having no prelude) is 

equivalent to separate the function in two parts, one linear part having only x0 and another part depending on the 
other variables: 

)x,...,x(gx)x,...,x,x(f 1L101L10 −− ⊕=  
These functions are known as non-singular functions. 

 
d) An example is the better choice to illustrate this concept.  Say, for example, we have a 5th order function: 

123412412132324341240310 xxxxxxxxxxxxxxxxxxxxx1)x,...,x,x(f ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=  
and we change the each variable by this manner: x1 ↔ x4 and x2 ↔ x3, we obtain this function 

123412412132324341240310 xxxxxxxxxxxxxxxxxxxxx1)x,...,x,x(f ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=  
If anyone of them is a DeBruijn function, then the other one will also be a DeBruijn function.  (in this case, both of 
them are).  Strictly speaking, given a maximum-period function, if we swap the indexes of the coefficients: xi ↔ xL-i 
we obtain another function having the same property. 
  
There are many different ways for showing this property.  The most intuitive proof is arguing over the DeBruijn 
graph associated to the FSR (we will later define this graph), but it can be also demonstrated algebraically.  We 
know that the function must have the (c) form: 

)x,...,x(gx)x,...,x,x(f 1L101L10 −− ⊕=  
Imagine an infinite sequence generated by this recursion formula.  Each bit in the sequence is calculated from the L 
previous bits: 

)s,...,s(gs)s,...,s(fs 1Ln1nLnLn1nn +−−−−− ⊕==  
and if the function f() is properly defined, we can obtain a DeBruijn sequence.  Suppose it is a DeBruijn sequence, if 
we invert the time axis we obtain an another different DeBruijn sequence (for example, given 11100010, the 
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inversion would derive to 01000111).  Now, the time goes the other way round, so the next bit would be calculated 
as: 

)s,...,s(gss 1Ln1nnLn +−−− ⊕=  
where the g(.) function is the same as the above equation, but here we have the time inverted, so the bits are inverted 
as well. 

 
e) We call linear terms to those terms in the algebraic normal form that only contain one variable: x0, x1, ..., xL-1.  The 

reason for not being all these terms together is for avoiding the following cycles: 

01000 10000 00000 00001 00010 00100 

 
 
We will reason by reducing to the absurd.  Suppose that the function is like this: 

)2orderoftermsother...(x...xx)x,...,x,x(g 1L211L21 ≥⊕⊕⊕⊕= −−  
Expressing the g(·) function in CNF (conjunctive normal form, commonly known as minterms) each xi terms may 
come only from the 1L21 x...xx −  or 1L1ii1i21 x...xxx...xx −+−  states.  It is easy to see that the 1L21 x...x −x  term 

must appear in g(·).  Each negation of a variable can be transformed into the ANF form replacing i x ix  by 1⊕ .  If 

we want all the linear terms to be in the function, we must impose to exclude the 1−Li1i21 xxxx...xx − 1i ...+  terms. 

   ⇒∀−+− i(·)ginappearnotdox...xxx...xx 1L1ii1i21  
      i0)0,...,0,1,0,...,0,0(g ∀=⇒  
      ⇒  the cycle 00...00 → 10...00 → 01...00 →...→ 00...10 → 00...01 → 00...00 is possible 
      ⇒  the function cannot give a maximum period sequence 
So, we arrive to the conclusion that there cannot be all the linear terms in the function. 

  Every feedback function :f  that leads to a maximum period sequence has to fit all the above 
necessary, but not sufficient, conditions. 

2
n
2 ZZ →

  We have found many other regularities as, for example, that the  terms always appears (for orders 
larger than 2); or that if one inverts the terms of the function (i.e. one term is in the new function if and only if it doesn’t 
appear in the first function) half of the functions are full period generators. 

1L21 x...xx −

 
 

4. Graph insights and results 
 
  Another very useful point of view is using the graph theory.  A directed graph (digraph) G is defined to be an 
ordered pair G = (V,E) of a set of vertex and a set or arcs.  Each arc is a pair or vertexes that indicates the beginning and 
the ending of the arc.  The DeBruijn graphs (also known as Good’s diagrams) have been deeply studied. 
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  Each node of the graph is a state of the FSR.  The objective is to obtain a walk through all the vertexes without 
repeating them, which is called a Hamiltonian circuit. 
  As the DeBruijn graph has the property that if it is double the resulting graph is also a DeBruijn graph of higher 
order, it can be shown that the problem of finding a Hamiltonian circuit in an n-order DeBruijn graph is equivalent of 
finding an Eulerian path (to pass all the arcs without repetition) on the (n-1)-order DeBruijn graph, which it is easier to 
calculate. 
 
Application of the adjacency matrix of a digraph 
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  Graphs can be represented by matrixes.  The adjacency matrix is an NN ×  matrix where each the rows and 
columns indicate the vertexes.  If there is an arc from the node i to the node j, the (i,j) element of the matrix evaluates to 
1, otherwise is 0.  The adjacency matrixes of DeBruijn graphs or order 2 and 3 have the form: 
 

































11000000
00110000
00001100
00000011
11000000
00110000
00001100
00000011 



















1100
0011
1100
0011 

 
 
 
 
    
 

Adjacency matrix for L = 2 
 
 
                   

Adjacency matrix for L = 3 
 
  When a feedback function is defined, the elements on the DeBruijn graph change so that every vertex has only 
one predecessor and one successor.  The adjacency matrix of the Hamiltonian circuit by a function is an permutation 
matrix, in which each row or column has only one element equal to 1.  In order to calculate these functions, we propose 
an iterate method.  In this method, all the ones are changed by variables, imposing that every row or column must have 
only one ‘1’.  For L = 3, this matrix is: 
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dd1000000
00cc10000
0000bb100
000000aa1

d1d000000
00c1c0000
0000b1b00
000000a1a

M  

 
  If we want a Hamiltonian circuit, there cannot be 1-length cycles, i.e., all the arcs going from one vertex to the 
same vertex, the (i,i) elements on the matrix, must be 0.  Imposing this restriction, we have a = 0 and d = 0.  In fact, we 
can continue extending the fact that there cannot be 2-length cycles, 3-length cycles,... , (2L-1)-length cycles by 
imposing that all the (i,i) elements of the matrices Mi are 0, for i<2L. 
 
  Analysing the results, it has seen the following properties (mostly by the fact of been a permutation matrix): 
 
•  0)M(Tr =
•   T1 MM =−

•  1)Mdet( −=
•  L2)M(rank =
• the eigenvalues are the complex n-roots of the unity 
 
Application of the incidence matrix of a digraph: 
 
  A sequence of maximum period length over a register with size n is determined by a function f , 

with .  Reciprocally, with such f(·) we can obtain a maximum period length sequence, by adding 
the following conditions: 

2
n
2 ZZ: →

( 1n0n x,...,xfx −= )

 
 1) f(·) bijective 
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 2) ( )f t xx rr
≠ , n

2Zx ∈∀
r

 
 
  That is, with the first condition we assure that with f is possible to reach every sequence in , so the function 

 defined by 

n
2Z

n
2

n
2 ZZ:h → ( ) ( )( 1n01n11n0 x,...,xf,x,...,xx,...,xh −−− = )  represents a permutation over .  With 

the second condition, we restrict f(·) to be a cycle; that is, its decomposition in product of disjoint cycles must have a 
unique term.  Now, for each f(·) we define a digraph G with: 

n
2Z

 
• vertices: ( ){ } n,...,1i,Zxx,...,x 2i1n1 =∀∈−

• adjacencies: ( ) ( )( )( ) ( ){ }n
21n01n01n11n0 Zx,...,x,x,...,xf,x,...,x,x,...,x ∈∀ −−−−  

 
  With this definition, if f(·) is bijective, the disjoint cycles in the decomposition of h(·) are the connex components 
of G.  Thus, the above conditions can be rewritten as: 
 
 1) f(·) bijective 
 2) G connex 
 
  Obviously, the first condition is easier to establish than the second one. To assure that G is connex we recall the 
following property of the incidence matrix of a digraph: 
 
Property: If G is a digraph with order n, r connex components, and incidence matrix I, then rank( ) 1rnI −−= .  
Applying this result to our problem we conclude: 
 
A function f  has the following two properties: 2

n
2 ZZ: →

 
 1) f(·) bijective. 
 2) The rank of the incidence matrix of the digraph G associated to f(·) is n-1. 
     (if and only if, the formula  induces sequence of maximum period length) ( 1n0n x,...,xfx −= )
 
  With this, if we know a function f(·), we have a direct and easy condition to determine if it is possible to obtain a 
sequence of maximum period length from it. 
Also, we apply the result in order to generate a new f(·): In fact, if f(·) is unknown, we can use the above result with a 
symbolic incidence matrix. That is, with a matrix defined as a function of f(·) evaluated in each point. Then, the 
condition over its rank gave set of equations in these terms, whose solutions are all the possibilities for such f(·). 
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