On the edge sums of deBruijn graphs*

Cynthia Chi

William P. Clements High School
Sugar Land, TX 77479

US.A.

Daniela Ferrero

Department of Mathematics
Southwest Texas State University
San Marcos, TX 78666

US.A.

Charles Hallford

Texas Academy of Math. and Science
Denton, TX 76203

U.S.A.

Rebecca Williams

North Lamar High School

Paris, TX 75462

U.S.A.

ABSTRACT

An interconnection network is a highly symmetrical connected graph of order
n nodes, size m edges, connectivity k and diameter d, where n and x are large but
m and d are small. Many interconnection networks are defined algebraically in such a
way that each node has an integer value. Then, every edge can be assigned an edge
sum, defined as the sum of the two nodes it joins. The edge sum problem of a graph
consists of the characterization of the set of edge sums over all edges. This problem was
introduced by Graham and Harary who presented the solution for hypercubes. Our goal
is to solve the edge sum problem for deBruijn interconnection networks.

* This work is the result of a research project carried out by students while attending
a Summer Math Camp at Southwest Texas State University. This paper provides
the starting point for other research projects also suitable for undergraduates.
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1. INTRODUCTION

An interconnection network is a highly symmetrical connected
graph G of order n nodes, size m edges, connectivity x and diameter
d, where n and x are large but m and d are small. Many interconnection
networks are defined algebraically in such a way that each node has
an integer value. With that numerical labeling of the nodes of G, the
network N(G) is constructed by assigning an integer weight to the
edges of G as follows. The weight w;; or edge sum of edge j € E(G) is
defined by w;;=i+j. The edge sum problem of a graph is to charac-
terize its set of edge sums. Our object is to solve the edge sum problem
for deBruijn graphs.

We begin by describing the solution [2] to the edge sum problem
for hypercubes. The hypercube @), has for its nodes the set V,, of all
the binary sequences with n terms, two of which are adjacent whenever
the sequences disagree in exactly one place. The following charac-
terization was established:

THEOREM 1A [2]. A positive integer x is an edge sum of some
hypercube if and only if x# 3 mod 4.
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Figure 1. Graphs @, and @; with their edge sums

2. EDGE SUMS OF DEBRUIJN GRAPHS

To define the deBruijn graphs [1] B(d, n) we must first define the
deBruijn digraph B(d, n), n > 2. Given positive integers d, n,d =2,
n>d, the deBruijn digraph B(d, n) has node set Zj, the set of se-
quences of length n on Z;. Two nodes a and B are adjacent whenever
the last n — 1 terms of o are identical with the first n - 1 terms of p.

The well-known family of interconnection networks, the deBruijn
graphs B(d, n), is obtained from the digraph B(d, n) by keeping the
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Figure 2. The two smallest deBruijn digraphs
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Figure 8. The two smallest deBruijn graphs
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Figure 4. The deBruijn digraph B(3, 2)

Figure 5. The deBruijn graph B(8, 2)
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same node set, but replacing each single arc joining two nodes of
B(d, n) by an undirected edge, and also replacing each symmetric pair
of arcs in B(d, n) by a single edge. If there are loops, they are removed.

With this labeling on B(d, n) we consider the network N(B(d, n)) in
which the weight of the edge ij, is wij, =1 + (id) mod d" + k.
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Figure 6. Graphs B(2, 2) and B(2, 3) with their edge sums

2.1. Edge sums of deBruijn graphs B(2, n)

To study the edge sums for the network N(B(2, n)) we distinguish
the following four classes of edges in B(2, n):

) {0x,...%,,,% ...%,,0}, where x;€{0,1} for all i=1, ...,
n -1, and at least one term x; differs from 0.
II) {Ox;...%,;,% ... %, 1}, where x;,€{0,1} for all i=1, ..,

n-1 ,
In {1x,..x,,,% ...%,,0 where x,€{0,1} for all i=1, ..,
n-1.

IV) {ix;...x%,1, % ...%,1}, where x;,€{0,1} for all i=1, ..,
n -1, and at least one term x; differs from 1.
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Let x be the integer whose binary representation is given by the
sequence ¥, ... X, ;, then 0 <x<2" 7 —1 and we can state:

) {0x;... %1, %; ... %, O} has edge sum 3x.
1D {0x; ... %4, % ... %, 1} has edge sum 3x+ 1.
D {1x;...x,;, % ... x,_; 0} has edge sum 3(x + oly_on,
IV) {lx...%,,%, ... %, 1} has edge sum 3(x+2" )+ 1-2",

Observe that in cases I) and IV) we must ask x#0 and
x# 2"1 — 1 respectively, because the graph has no loops.

PROPOSITION 2.1. Let n be a positive integer and y an integer,
0<y<2"-2 Then, 1+y is an edge sum of B(2,n) if and only if
2™l _3_y is an edge sum of B(2, n).

PROOF. We start proving that 1 +y is the edge sum of a type I)
edge, if and only if 2%**! - 8 — y is the edge sum of a type IV) edge. In-
deed, 1 +y is the edge sum of an edge {Ox, ... x,._1, % ... x,_; O} if and
only if 1+y=38x, where x is the integer represented by x, ... x,_;.
Then, y =3x—1 and so 2%*1 -3 - y=2"! _ 3 - (3x - 1), which is ex-
actly the edge sum of the type IV) edge {1(1 - x;) ... 1 —x,_1), (1 —x;)
. (1 = x,_11}. In the same way we can show that 1 + y is the edge sum
of a type II) edge {0x, ... x,_;, %, ... %,_; 1} if and only if 2l _3_yis
the edge sum of a type III) edge {1(1-x)...(1—x,_p), (1 —xp) ...
(1 - x,_,)0}, which is sufficient to conclude the proof. U

If we look at the edge sums module 3,

o The sums for type I) edges are all integers congruent to 0
(mod 3), between 3 and 3(2"' - 1). ‘

e The sums for type II) edges are all integers congruent to 1
(mod 3), between 1 and 3(2"' - 1) + 1.

For the next two classes we need to consider two cases depending
on n being even or odd, since 2™ =; 2 if m is even and 2" =; 1 if m is
odd.

If n is even:

o The sums for type III) edges are all integers congruent to 2
(mod 3) between 2" and 32" - 1)+ 2%,
» The sums for type IV) edges are all integers congruent to 0
(mod 8) between 1+2% ! and 32" - 1)+ 2" +1.
If n is odd:

e The sums for type III) edges are all integers congruent to 1
(mod 3) between 2"! and 32" - 1) + 2",
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o The sums for type IV) edges are all integers congruent to
2(mod 3) between 1 + 2! and 3@" -1 +2" 1+ 1,

Now we are able to state the following two Theorems that give a
complete description of the edge sums of B, depending on n even or
odd.

THEOREM 2.2. Let n be a positive even integer, then the edge sums
set of B(2,n) is

L,={m:m=300rms=s31,1<ms 32" -1+ 1}
U{n:m=g20rms=30,2" <m<3@"-1)+2"".

PROOF. The edge sums of type I) edges in B(2, n) is the set
{m:m=01<m<32""-1)+1} and the edge sums of type II)
edges is the set {m:m=31,1<m <32 1_ 1)+ 1}. Also if n is even
the edge sum of type III) edges in B(2,n) is the set
fmim=22" <m<3@" -1+ 2" and the edge sums of type IV)
edges is the set {m : m =3 0, 2" 1 <m < 32" - 1) + 2"} The union of
those four sets gives the set L, of edge sums of B(2,n). O

THEOREM 2.3. Let 1 be a positive odd integer, then the edge sums
set of B(2,n) is

L,={m:m=00rms=51,1<m<3@"" -1)+1}
uim:ims=glorms=y2, 2" <m<3@" -1)+2"".

PROOF. The edge sums of type I) edges in B(2, n) is the set
{m:m=0,1<m<3@2""-1)+ 1} and the edge sums of type II) edges
isthe set {m:m=g1,1<m< 32" - 1) + 1}. Also if n is odd the edge
sum of type III) edges in B(2, n) is the set {m:m =31, 2" l<mg
32" 1-1)+2""Y and the edge sums of type IV) edges is the set
fm:m=22"1<ms3@" -1+ 2", The union of those four sets
gives the set L, of edge sums of B(2,n). [J

It is simple to observe that the edge sums of B(2, n) are integers
in the interval [1, 2™ - 8]. The next two Corollaries provide a char-
acterization of the integers in that interval that are not in the edge
sums set of B(2, n).

COROLLARY 2.4. Let n be a positive even integer, the edge sums set
of B(2, n) contains all the integer between 1 and 2™ - 3, except by the

2 n—1 _ 2
2 3 integers in the set
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fm:im=42,0<m< gt 2}

U2t ~2-m:m=20<m<2" -9

PROOF. By Theorem 2.2 we know the set L, of all the edge sums
of B(2, n). It is easy to see that {m : 1 <m < 2! _3} _ L is the union
of the set {m:m=;2,0<m<2""-2} and the set {2"-2-m:m =, 2,
0o<m<2™l-2. O

COROLLARY 2.5. Let n be a positive odd integer, the edge sums set
of B(2, n) contains all the integer between 1 and 2™ - 3, except by the

n-1
2 (g—é;lj integers in the set
fm:m=g2,0sm<2% -1

u{2”~2—m:ms32,03m52”"1—1}.

PROOF. By Theorem 2.3 we know the set L, of all the edge sums
of B(2, n). As in the previous Corollary, {m:1<m < 2" - 3-L,is
union of the sets {m:m=2,0sm<2"'-1} and 2" -2-m:m =52,
0<sm<2"-1. O

The multiplicity of an integer s as edge sum of a certain
B(2, n) is the number of edges whose edge sum is s.

THEOREM 2.6. Let n be a positive even integer, the multiplicity of
all the integers in the edge sums set of B(2,n) is 1, except by the

3
that have multiplicity 2.

n .
[ 2 -4 J + 1 integers in the set {m:m=40,1+2" < m<3@" - 1)

PROOF. The edge sums of type II) edges have all multiplicity 1
because each integer in the set {m:m=41, 1<m<3@" - 1)+ 1} is
the edge sum of only one type II) edge and other type of edges have
their sums not contained in that set because they are not congruent
to 1 (mod 3). Similarly, the edge sums of type III) edges have also mul-
tiplicity 1. However, type II) and IV) edges have edge sums congruent
to 0 (mod 3) in the integer intervals [1,3(2"'-1)+1] and
[2"1 3@ - 1)+ 2", respectively. Thus, the intersection of those
intervals gives the only edge sums with multiplicity 2, and it is the set
fm:m=,0,1+2" <m<3@" -1} 0O

THEOREM 2.7. Let n be a positive odd integer, the multiplicity of
all the integers in the edge sum set of B(2,n) is 1, except by the
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2" —2
3
that have multiplicity 2.

+ 1 integers in the set {m:m=30, 2"t s m<3@" -1+ 1}

PROOF. The edge sums of type I) edges have all multiplicity 1 be-
cause each integer in the set {m : m =50, 1 < m < 3(2 "1 _ 1)+ 1} is the
edge sum of exactly one edge of type I) and other type of edges do not
have their edge sums in that set since they are not congruent to 0
(mod 3). Analogously, the edge sums of type IV) edges have multiplicity
1. Type II) and III) edges have edge sums congruent to 1 (mod 3) in
the integer intervals {1, 3(2 "1_1)+1] and 21 3" - 1)+ 2",
respectively. The intersection of those intervals gives the set
fm:m=30,1+ 27"l < < 32" - 1)} containing all edge sums with
multiplicity 2. [J '

2.2, Edge sums of deBruijn graphs B(d, n)

PROPOSITION 2.8. Let d, n be two positive integers, d 22 and y an
integer, 0 <y < d"— 2. Then, 1 +y is an edge sum of B(d, n) if and only
if 2" -3~y is an edge sum of B(d, n).

PROOF. If 1+y is the edge sum of an edge, let us say
{ax; ... %1, %; ... %,1b}, then L+ y=(d+ Lx + ad™! + b where x is the
integer represented by the sequence xy ... %1, . Now we look at the

edge sum of {d-1-a)(d-1-x)..(d-1-x,), d-1-x)..
(d—-1-x, ) (d-1-0b). Ifx'is the integer represented by the sequence
d-1-%)..(d-1-=%,,), the edge {d-1- a)y(d-1-x%)...
d-1-%,1),d-1-2)..(d-1-x, )(d-1- b)} has edge sum
@d+Dx'+(d-1-a)d "1, (d -1-b). Now, because of the choice of
x and x,x'=d"'-1-x, and so (d+Dx'+(d-1 —ayd"
(d—1-b)=2d" - (d+ 1)x-ad” ' -2 - b. This proves that 2ml_g_y
is an edge sum of B(d, n). The reciprocal can be proved in the same
way. O

THEOREM 2.9. Let d, n be two positive integers, n even and
d > 2. The edge sums set of B(d, n) contains all the integer between 1

n-1 _ ]
and 2d" - 3, except by the 2 djd—:—f‘—l integers in the set

{m:m=g,3d,0<ms d" - dy
u{2d"-2-m:m=syy3d,0<m< d" ! -d}.
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PROOF. By Proposition 2.8 it is enough to prove that the only in-
tegers that are not edge sums between 0 and d"! - 1 are exactly the
set {m:m=y,;,d, 0<m<d"'-d}. Now, the edge sum of a generic
edge {ax;..%, 1, % ...%, ;b is (d+1x+ad"'+b, where 0<a,
b<d-1,0<x,<d-1 for all i=1,...,n—1 and not all the terms
equal, in order to avoid loops. Then, considering all the possible values
for x; and b when a = 0, the edge sums obtained are the integers in the
intervals [1,d-1] and [x(d+ 1), x(d +1)+d - 1], for all integer x,
1<x<d"' - 1. Observe that the maximum integer in those intervals
is d"+d"'-2>d"-1. Besides, the integers between 1 and
d" +d" - 2 that do not belong to any of those intervals are those con-
gruent to d(mod d + 1). Then, we only need to prove that the integers be-
tween d" ' ~d+1 and d" - 1 that are congruent to d(mod d + 1) are
edge sums of some edges where a # 0. Indeed, if we proceed as before but
with a=1, considering all the edge sums for any integer
x,0<x<d" -1 and any b,0<b<d-1, we obtain all the integer
intervals [W(d+ 1) +d" !, od+1)+d" ' +d~1]. Since m is even,
d"?! =1y @ 50 x(d + 1) + d"! =1 @ and all the integers congruent to
d (mod d + 1) between d"! —~d+ 1 and d”" - 1 are in those intervals.

O

THEOREM 2.10. Let d,n be two positive integers, n odd and
d 2 2. The edge sums set of B(d, n) contains all the integer between 1
n-1

and 2d" - 3, except the 2 (d—dﬁll] integers in the set

{m:ms=g,,3d,0<sm<d" " -1}
ufed"-2-m:m=4,,3d,0sm<d" -1},
(d+1)

PROOF. By Proposition 2.8 it is enough to prove that the only
integers that are not edge sums between 0 and d"! - 1 are exactly the
set {m:m=y, d 0<m<d"' - d}. Now, the edge sum of a generic
edge {ax;..%, 1, % ...%,_, b} is (d+1x+ad”'+b, where 0<a,
b<d-1,0<x<d-1 for all i=1,...,n-1 and not all the terms
equal because the graph has no loops. Then, considering all the possible
values for x; and b when @ =0, the edge sums obtained are the inte-
gers in the intervals [1, d - 1] and [x(d + 1), x(d + 1) + d - 1], for all in-
teger x, 0 <x<d"' - 1. Observe that the maximum integer in those
intervals is d"+d"'~2>d" - 1. Also the integers between 1 and
d"+d"' -2 that do not belong to any of those intervals are congruent
to d (mod d + 1). Then, it remains to prove that the integers between
d"'—d+1and d"-1 that are congruent to d (mod d + 1) are edge
sum of some edge with a # 0. Proceeding as before but with a = 1 we
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obtain all the integers intervals [x(d + 1) + A" d+ 1) +d" +d~1].
Since m is odd d"' =¢g,;) L so x(d + 1) + d""'+d - 1=y, d and all the
integers congruent to d(mod d + 1) between d"l'-d+1landd" - 1are
in those intervals. [l

COROLLARY 2.11. Let n be a positive even integer, then the edge
sum set of B(d, n) is

Ly, ={m:m#gyd Lsm<d"" -d}
) {7n m E'é(d+1) 1’ 2d“’ 2<m< Zd”— d _ dn—-l}

ufm:d*-d+1<m<2d"-d}.

PROOF. By Theorem 2.9 we know that the only integers between
1 and 2d"-3 that are not edge sums are in {m:m=g.,d,
0<m<d" —d} or {2d"-2-m:m=y,pd, 0sms d"! —d}. Then,
it is obvious that the set {m 1 m =4,y d, 1<m< d" ' - d} is included in
Ly,. It is also simple to check that fm:im#gy 1, 2d"-2<m<
9d" —d + 1 -d" Y} reflects that the integers in the set {2d" -2 -m:
m=gqd, 0<m< d™ ! - d} are not edge sums. Again, by Theorem 2.9,
the set {m :d" ' —<m<2d" - d} contains only edge sums. O

COROLLARY 2.12. Let n be a positive odd integer, then the edge
sumn set of B(d, n) is ‘

Ly, ={m:m#gyd 1<ms drlo 1)
Ufn:m#gy 1, 2d" -2<m<2d" - 1-d""}

u{m:d" -<m<2d" -1}

PROOF. By Theorem 2.10 we know that the only integers between
1 and 2d"-3 that are not edge sums are in {m:m =g,y 3d,
0Osm<d" ' -or{2d"~2-m:m=g4,d, 0<ms d" ! - 1}. Then, it
is obvious that the set {m : m #g4,;yd, 1sm< d™ 1 -1} is included in
Ly,. It is also simple to check that fm:m#g 1, 2d" -2<m<
2d" —1-d" Y} reflects that the integers in the set {2d"-2-m:
m=g,d, 0sms d"™1-1} are not edge sums. Again, by Theorem
2.10 the set {m:d" ! —<m <2d" - 1} contains only edge sums. [J

Figure 7 shows the previous results. Note that from all the integers
in the interval [1, 23% - 3]. As a consequence of Theorem 2.9, for every
graph B(d, 2) we can state the following Corollary.
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8
9 5 12 . 15

11 : 13
Figure 7. The deBruijn graph B(3, 2) with its edge sums

COROLLARY 2.13. Let d be a integer. The edge sums set of
B(d, 2) contains all the integer between 1 and 2™ - 3.

PROOF. By Theorem 2.9 we know that the edge sums of
B(d, 2) are all the integers between 1 and 2"*' - 3 except by those in-
tegers in the set {m:m=y,;d 0<m< d"'~d} or in the set
2d"-2-m:m =and0sms d"! - d}. However, since n = 2, those
sets are both empty. O

3. CONCLUSION

The solution to the edge sum problem for a general deBruijn
graph has been presented. Furthermore, those integer that appear
more than once in the edge sums set have been identified. However,
the multiplicity of an integer as an edge sum has been calculated only
for deBruijn graphs in the form B(2, ). The calculus of the multiplicity
of an edge sum in the general case B(d, n) where d > 2 is still open and
it is an interesting extension of the work exposed. In addition, other
related problems may provide research projects suitable for under-
graduates. For example, to solve the edge sums problem for other
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interconnection networks, such as the Kautz graphs [4] which have
very similar properties to the deBruijn graphs from the applied point
of view. Another family of graphs where the edge
sum problem is also interesting is the cube-connected cycles [5], a
generalization of hypercube networks. Investigation of this family
would provide an opportunity to extend the earlier results of Graham
and Harary [2].
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