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Abstract 
Electric power networks must be continuously monitored. Such monitoring can be 

efficiently accomplished by placing phase measurement units (PMUs) at selected network 

locations. Due to the high cost of the PMUs, their number must be minimized. The power 

domination problem consists of finding the minimum number of PMUs needed to monitor a 

given electric power system. The power dominating problem is NP-hard, but closed formulas 

for the power domination number of certain networks, such as rectangular meshes [4] have 

been found. In this work we extend the results for rectangular meshes to honeycomb meshes. 
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1. Introduction 

For electric power companies the continuous monitoring of their 

 systems represents a crucial task. One way to accomplish it, consists of 

placing phase measurement units (PMU) at selected locations in the sys-

tem. Because of the high cost of a PMU, it is desirable to minimize the 
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number of PMUs used, while maintaining the ability to monitor the entire 

system. The power system monitoring problem, as introduced in [1], asks 

for the minimum number of PMUs, and their locations, needed to monitor 

an electric power system. This problem has been formulated as a graph 

domination problem by Haynes et al., in [6]. However, this type of domi-

nation has a different flavor than the standard domination type problem, 

since the application of the domination rules can be iterated. Next we give 

a formal description of the power domination problem in graph theory. 

Let ( , )G V E=  be a graph representing an electric power system, 

where a vertex represents an electrical node and an edge represents a 

transmission line joining two electrical nodes. A PMU monitors, or domi-

nates, the vertex at which it is placed and its incident edges and their end 

vertices. The other domination rules are as follows: 

(1)  Any vertex that is incident to a dominated edge is dominated. 

(2)  Any edge joining two dominated vertices is dominated. 

(3)  If a vertex is incident to 1k 2  edges and if 1k -  of these edges are 

dominated, then all k of these edges are dominated. 

Note that we gave the rules as presented in [6]. In [3] the authors pres-

ent the propagation rules in a different way, that ultimately, as observed in 

[4], is equivalent to the given formulation. 

A set S V3  is defined to be a power dominating set of G if every 

vertex and every edge in G is dominated by S according to the previous 

domination rules. The power domination number of G, denoted by ( ),Gcp  

is the minimum cardinality of a power dominating set of G. Notice that 

in the standard theory of domination, a set S V3  is a dominating set in 
G if every vertex in V \S has at least one neighbor in S. The minimum 

cardinality of a dominating set of G is its domination number, denoted by 

( )Gc . Since any dominating set is also a power dominating set, we have 

p1 ( ) ( )G G# #c c  for every graph G. 

Given an arbitrary graph G and an integer k, the problem of deciding 

if G has a power dominating set of cardinality k has been shown to be NP-

complete even when restricted to bipartite graphs or chordal graphs [6], or 

even split graphs [8], a subclass of chordal graphs. However, Liao and Lee 

gave a linear algorithm for this problem in the case of interval graphs, pro-

vided that the interval ordering of the graph is known [8] . If the interval 

order is not given, they gave an algorithm of O(n log n) that they proved to 

be asymptotically optimal. Other efficient algorithms have been presented 

for trees [7] and more generally, for graphs with bounded treewidth [7]. 
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The power domination number and minimal power dominating sets 

for grid graphs were obtained by Dorfling and Henning [4]. In [3], Dorbec 

et al., determined p ( )Gc  when G is the direct product of paths or G is the 

lexicographic product of any two graphs. Later, Barrera and Ferrero ob-

tained upper bounds for p ( )Gc  when is a cylinder, a torus, or a generalized 

Petersen graph, and identifies many cases where their bounds coincide 

with the power domination number [2]. More generally, upper bounds for 

p ( )Gc  for an arbitrary graph G were given by Zhao, Kang and G.J. Chang 

[11]. Other upper bounds have been given for block graphs [12] and claw-

free graphs [11]. 

In this paper we use a similar technique to that employed by Dorfling 

and Henning on the grid graph, and as a result we determine the power 

domination number for the honeycomb mesh. 

2. Definitions and notation 

In this paper we deal with honeycomb meshes, first studied by Stoj-

menovic [9]. Honeycomb meshes are closely related to grid graphs in the 

sense that they originate on different plane tessellations: hexagonal and 

square, respectively. Indeed, honeycomb meshes offer a model for mul-

tiprocessor interconnection networks with similar properties to those of 

mesh-connected computer networks, also referred to as grid graphs [10]. 

To define the honeycomb mesh we will use the following notation: for 

a given ,n Z!  we denote by [n] the set 1, 2, , 1,0,1,2, .n n nf f- + - + -" ,

Definition 2.1. The hexagonal honeycomb mesh of dimension 1, ,n n Z$ !  
( ),HM n  has vertex set ( ( )) {( , , ) / , , [ ]  V HM n x y z x y z n=  and }x y z1 2# #+ +  

and two vertices (x1,y1,z1) and (x2,y2,z2) are adjacent if and only if 
.x x y y 1- + - =1 2 1 2  Let {( , , / , , [ ]V x y z x y z n!=1  and }x y z 1+ + =  

and {( , , / , , [ ]V x y z x y z n!=1  and 2} x y z+ + = .

Intuitively, HM(1) is one simple hexagon. Then, the honeycomb 

mesh of dimension 2, HM(2), is obtained by adding six hexagons to the 

boundary edges of HM(1). In general, the honeycomb mesh of dimension 

, ( ),t HM t  is obtained by adding a layer of hexagons around the boundary 

of HM(t−1). The dimension of HM(n) represents the number of layers of 

hexagons between HM(1) and the border of HM(n). The following figure 

shows the labeled version of the graph HM(3). 

Note that HM(n) is a bipartite graph. We denote its partite sets by V1  

and V2 . Also, we define the following diagonals in HM(n). 
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Definition 2.2. For every [ ]k n  the x-diagonal at ,x k=  denoted by Dx k=  is 
defined as .{( , , ) ( )/  D k y z HM n k y z k1 2x k ! # #= - + -= }

Note that there are 2n x-diagonals in HM(n). The y-diagonals and 

z-diagonals can be defined similarly. We say that a vertex v covers a diago-

nal D, if .v D!

Definition 2.3. For a graph G and a set ( ),T V G3  the closure of T in G is de-
noted by ( )C TG  is recursively defined as follows: Start with ( )C T TG = . As long 
as exactly one of the neighbors of some element of ( )C TG  is not in ( )C TG , add that 
neighbor to ( )C TG . 

Figure 1
The labeled honeycomb mesh HM(3)
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Definition 2.4. For a graph G and a set ( ),T V G3  the star closure of T in G 
is denoted by ( )C TG

*  is recursively defined as follows: Start with ( ) .C T T=G
*  As 

long as exactly one of the neighbors of some vertex of G is not in ( )C TG
* , add that 

neighbor to ( )C TG
* .

If the graph G is clear from the context, we simply write ( )C T  and 

( )C T*  rather than ( )C TG  and ( )C TG
* . Note that the set of vertices power 

dominated by a set S is ( [ ]) .C N S  In particular, if S V!  is power dominat-

ing set of G, then ( [ ]) .C N S V=G  Further, if S power dominates G and if T is 

obtained from S by adding all but one neighbor of every vertex in S then 

( )C T V=G .

3. Honeycomb mesh 

In this section we are going to prove that ( ( ))HM n n
3
2c =P ,` j  for every 

positive integer n. We begin by showing that the previous expression gives 

an upper bound. 

Lemma 3.1. If ( ),G HM n=  then ( ) .G n
3
2

#cP ` j

Proof: We consider three possibilities and give a power dominating set 

for each. 

 (i) If 3n k= :

 (0, 3 , 2 3 ):1 (0,3 2, 3 3 ) :1 } .D i i i k i i i k# # # #= - - -

 In this case, .D k2=  Also, 
( )

.n k
k

3
2

3
2 3

2==` cj m

(ii) If 3 1 :n k= +

 {( , , ) : } {( , , ) :D i i i k i i0 3 2 4 3 1 1 0 3 1 2 3,# #= - - + - -

 1 }.i k# #

 In this case, .D k2 1= +  Also, 
( )

2 .n k
k

3
2

3
2 3 1

1=
+

= +` cj m

(iii)  If n k3 2= +

 {( , , ) : } {( , , ) :D i i i k i i0 3 1 3 3 1 1 0 3 3 4 3,# #= - - + - -

 1 1}.i k# # +

 In this case, .D k2 1= +  Also, 
( )

2 .n k
k

3
2

3
2 3 1

1=
+

= +` cj m

In each case D is a power dominating set of cardinality n
3
2 .

An illustration of a power dominating set used in Lemma 3.1 for the 

honeycomb mesh HM(3) is given in Figure 2. The vertices in the power 

dominating set have been circled. 
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To prove that the upper bound is also a lower bound we need the 

 following result. 

Lemma 3.2. Let ( )G HM n= . If T V13  and 2 ,T n1  then ( )C T*  covers at 
most T  diagonals. 

Proof: Let Gl be the graph with vertex set ( ) ( )V G V G=l  where 

( )uv E G! l  if and only if ( , ) 2.d u v =G  For disjoint subsets , ,U U V31 2 1  

if no vertex of ( )C V*
1G  is adjacent in Gl to any vertex of ( ),C V*

G 2  then 

( ) ( ) ( ) .C V V C V C V* * *
11 , = 2G G G2  We may therefore assume that ( )C T*

G  is con-

nected in Gl. Now, let us prove the statement by induction on T .

If ,T 1=  the result clearly holds. Now, let us consider T V3 1  with 

T 1= . We can assume ( )C T*
G  is connected in Gl. Also, since the number 

Figure 2
The power dominating set of Lemma 3.1 for HM(3)
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of ,x y  or z-diagonals in ( )HM n  is exactly 2n, we can assume .T n21  By 

inductive hypothesis, the result holds for all .T T3l  In particular, for a 

maximal proper subset T T3l  such that ( )C T*
G l  is connected in Gl. Since 

( )C T*
G  is connected, some vertex of , ( )T C T T*

G \l l  is adjacent in Gl to some 

vertex of ( )C T T*
G \ l . By maximality of , ( )T C T T*

G \l l  is connected. Since the 

the inductive hypothesis also applies to ( )T T\ l , we have the following: 

(1)  The number of diagonals covered by ( )C T T#G
* l l .

(2)  The number of diagonals covered by ( )C T T#G
* l l .

Therefore, from (1) and (2) we conclude that the number of diagonals 

covered by ( ) ( ) ( )C T C T C T* * *,=G G G T\l l  is at most .T T T+ =T\l l

Figure 3 shows a set T (red vertices) in HM(3) and the corresponding 

set ( )C T*
G  (blue vertices). 

Lemma 3.3. If ( )G HM n= , then ( )G n
3
2

$cp ` j.

Figure 3
( )C T*

G  (blue vertices) for a set T (red vertices) in HM(3)
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Proof: Let ( )G HM n=  and let ( )S V G3  be a power dominating set 

of G. Let T be obtained from S by adding the neighbors of every ver-

tex in S that is [ ]T N S= . Since S is a power dominating set of G, then 

( ) ( )CG T V G= . Notice that in a bipartite graph H with partite sets H1  and 

H2 , ( ) (( )C W H C W H H HH H+ + , +31 1 2 1 ( ),C W H* += H 1  for any ( ) .W V H3  

Thus we have, ( ) (( ) ) ( )C T V C T V V V C T V1
*

G G+ + , + +3 =1 2 1 G 1  and there-

fore ( )C T V* +G 1  covers all diagonals. Hence it follows from Lemma 3.2 that 

T n2, $1V  which implies T n2$ . For any ,v G!  we have ( ) 3deg v #  

and so .T S3#  Thus we have, .S T n3 2$ $  .S n
3
2` $  .

Now we can state our main result. 

Theorem 3.4. If ( ),G HM n=  then 
P
( ) .G n

3
2c = ` j

Proof: It follows from Lemma 3.1 and Lemma 3.3. .
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