
Introduction to interconnection network models.Daniela FerreroUniversitat Polit�ecnica de Catalunya, Espanya �Universidad de la Rep�ublica, Uruguay yJune 10, 1999AbstractThis work contains the most important results of the doctoral the-sis "Graphs and Hypergraphs as Interconnection Network Models" byDaniela Ferrero supervised by Carles Padr�o. This thesis was done at theDepartment of Applied Mathematics and Telematics of the PolitechnicalUniversity of Catalonia.We can divide this work into three parts. In the �rst one, some re-sults about the fault-tolerance of known models based on digraphs aregiven (poin-to-point networks). The second part is devoted to the studyof hyperdigraphs based models (bus networks). This is a new area, sobefore some equivalent results about the fault-tolerance, we need to proveother topological properties. Finally, a little part concerning with randomsequences useful in stream cipher applications is presented.1 IntroductionFrom some years ago, interconnection networks are becoming a very useful toolfor a wide range of problems of very di�erent nature. Mainly, this is due tothe availability of technological possibilities to manage networks with a greatnumber of nodes and a high quantity of connections between them.To deal with interconnection networks di�erent classi�cations can bestated. For instance, the objective of economical saving lead us to distinguishbetween LANs (Local Area Networks) and WANs (Wide Area Networks). If wefocus on the nature of the communication links, networks can be classi�ed intopoint-to-point networks and bus networks [59].Interconnection networks consisting of some processors and connectionsbetween pairs of them are called point-to-point networks. They are usuallymodeled by graphs. A bus networks consists in a set of processors and a setof buses providing communication channels between subsets of processors. Busnetworks are represented by hypergraphs. In both cases, the communication�e-mail: matdfc@mat.upc.esye-mail: dferrero@�ng.edu.uy 1



links can be directed or not. To model networks based on unidirectional links,directed graphs (digraphs) and directed hypergraphs (hyperdigraphs) are used.In spite of their reliability and performance, networks of multiple busarchitectures have not been as much studied as those based on point-to-pointconnections.This work deals with some problems about graphs and hypergraphs re-lated to this modelization.When designing a communication system, most of the requirements re-lated to the topology of the interconnection network can be stated in terms ofgraphs or hypergraphs. The �rst of these requirements is the need of connectinga large number of nodes with the minimum communication delay, when there isa limitation on the number of connections supported by every node. To evaluatethe communication delay it is important to consider the number of processorsthat should be traversed to send a message from any processor to another ar-bitrary one. Although in some cases the minimization of this number is notenough to assure the communication e�ciency, it is always relevant in order tosimplify the network administration.Another requirement for communication systems is the fault-tolerance.That is, the network should still communicate with high performance, if possi-ble, when some processors or links are faulty. Then, for interconnection networkmodels with the aforementioned conditions, an interesting property to study isthe vulnerability. That is, the incidence of some faults in the network commu-nications. Traditionally, it was the variation in the maximum number of linksneeded to connect any two processors, the parameter that has been used for thispurpose [5, 45, 53].In practice, apart from theoretical measures of the fault-tolerance capa-bility, it is important the routing facilities of a model. Specially, the possibilityto route e�ciently in the presence of faults. For this reason, the studies of thefault-tolerance by �nding all the better alternatives to route, depending on thefaulty elements have particular interest [21].Finally, a communication network is desired to be versatile, in the sensethat it may provide easy ways to add or remove some processors without lossof performance. The expandability is related to the capability of a networkto increase or decrease its number of processors. This concepts measures thisfacility in terms of the links that must be a�ected [10].For point-to-point networks the basic requirements mean that the systemmay have a high level of connectivity and also may consider the maximumnumber of connections that a processor can admit to work e�ciently. Di�erentconditions related to graphs have been presented to model this need. Theyare basically expressed in terms of the order, the diameter and the maximumdegree. The goal is to �nd graphs with arbitrary large order and minimumdiameter for a given maximum degree. This generates a con
ict between theconcepts involved. So, this situation gives rise to many optimization problemsconcerning graphs. Basically, they consist in prioring a requirement and tryingto optimize the second one. For such problems, some particular families ofgraphs and directed graphs have been presented. The De Bruijn and Kautz2



digraphs [17, 52], the bipartite digraphs BD(d; n) [35] and the De Bruijn andKautz generalized cycles [40] are some of them. More generally, for directedgraphs there are of two techniques that were shown to be good for such problems.The line digraph technique provide facilities to construct large digraphs witharbitrary diameter and given minimum degree [36]. To obtain digraphs withsmall diameter for �xed values of the order and maximum degree, the partialline digraph technique has a good behaviour [33].In relation to the fault-tolerance, there are particular studies for someof the good particular families of digraphs mentioned in the above paragraph[48, 54]. They are based on similar techniques, consisting in �nding contain-ers between any pair of processors. All these families are iterated line di-graphs [35, 36], and the containers are based on this fact. Other methods wererequired for the same problem in general digraphs obtained from the line digraphtechnique. In this case, the problem was studied with the same point of viewused before to study the connectivity. So, theoretical bounds were presented,but not describing containers, for example in [53].Bus networks are a generalization of point-to-point-networks. However,an additional parameter must be considered, and it is the number of processorsthat a bus can connect. This impose restrictions on the number of verticesconnected to a hyperarc, and on the number of hyperarcs connected to a vertex.These two values are bounded by the physical nature of the components. So, inthis case, we focus on hypergraphs with arbitrary order and minimumdiameterfor �xed values of the minimum processor degree and the minimum bus size.Again, it is impossible to impose all the desired conditions at the same time. Asfor graphs, the approach to such problem is to treat it by optimization problems.In one case all the parameters are �xed except the order, and the problem consistin �nding large hypergraphs with such parameters. The other situation is whenfor given values of all the parameters, except the diameter, it must be minimized[22]. As for graphs, there are also some particular proposed solutions. Forthe directed case the generalized De Bruijn and the Kautz hyperdigraphs wereintroduced [8]. For the case of size equal to one, these families coincide withother solutions proposed before for the same problems restricted to digraphs.Also the line digraph technique was generalized to hyperdigraphs [6]. The samegood results in order to construct large hyperdigraphs are obtained.In the present work we study some problems related to the fault-toleranceof digraphs. First for the particular good models for interconnection networks,and then for general iterated line digraphs. Besides, we deal with other aspectson hyperdigraphs. For example, the connectivity and the fault-tolerance. Wealso propose a method for constructing hyperdigraphs of minimum diameter for�xed order, degree and size. Some properties of such technique are given.Next, we give a scheme of the organization of this work.We present in Section 1 the de�nitions of the main concepts and thenotation that will be used in the rest of the work. The de�nitions and the mainknown results about the families of digraphs and hyperdigraphs that are studiedin this thesis are also given in this section.Sections 2 and 3 are devoted to the study of point-to-point networks.3



In Section 2, we study the fault-tolerance of the De Bruijn and Kautzgeneralized cycles. As it was mentioned, they were proposed as good models fordesigning interconnection networks. In fact, they can connect a large number ofvertices in relation to the degree and the diameter. We deal with the problemby �nding containers between every pair of vertices. The values obtained showthat the fault-tolerance capability of these families is optimal. The results ofthis section correspond to the publications [26, 27].The fault-tolerance of interconnection network models de�ned by the it-eration of the line digraph technique is studied in Section 3. There, some newparameters are introduced in order to improve the known theoretical bounds onfault-diameters. The general bounds obtained, when calculated for some par-ticular digraphs, coincide with the exact values. So, the bounds are optimal atleast for some cases. The results in this section have been presented also in ourpaper [28].We treat some problems related to bus networks in Sections 4 and 5.In Section 4, we de�ne some parameters in order to study the connectivityand fault-tolerance of directed hypergraphs de�ned by the iteration of the linehyperdigraph technique. For the connectivity, similar results that for iteratedline digraphs are obtained. In order to analise the fault-tolerance, the fault-diameters are introduced. We obtain theoretical bounds, as a generalization ofthe known results for digraphs. The results stated in this section were presentedin [24, 29, 30].The partial line digraph technique is de�ned for directed hypergraphs inSection 5. Similar results that for digraphs are proved. The partial line hyper-digraph is shown to generalize also the line hyperdigraph technique.Partial linehyperdigraphs are shown to have large order for their diameter, minimumdegreeand minimum size. Besides, they present good connectivity and expandibility.Also a characterization of line hyperdigraphs in terms of line digraphs is given.The above characterization, in the case of line hyperdigraphs, is a proof of aconjecture introduced in [6]. Our paper [31] collects also the results in thissection.Finally, we include a section about De Bruijn sequences. Particularly,the De Bruijn sequences of maximum period length are interesting because oftheir randomness properties [14, 15, 19, 51]. They have a great number ofapplications in many areas of computer science and abstract algebra. Speciallyfor stream ciphers, needed to provided security services [18, 56]. Actually, theAsynchronous Transfer Mode (ATM) and the Broadband Integrated ServicesDigital Network (B-ISDN) are the most promising techniques for high speednetworks, and both scenarios require ciphering services [57].In Section 6 we expose the problem of �nding all De Bruijn sequencesof maximum period length in terms of digraphs. By a matricial analysis of theproblem we obtain some interesting properties. Also a test to decide whetheror not a sequence is a De Bruijn one of maximum period length is presented.These results in this section correspond to [32].4



2 Graphs, hypergraphs and interconnectionnetworks2.1 Basic de�nitions about graphsWe present here some de�nitions used in the following sections. For detailsand more information, see for example [16, 41]. A directed graph G = (V;A)consists of a set of vertices V and a set A of ordered pairs of vertices calledarcs. Usually, they are also called digraphs for short. The arcs in the form(x; x) are called loops. The cardinality of V is the order of the digraph. If(x; y) is an arc, it is said that x is adjacent to y and that y is adjacent fromx. The set of vertices which are adjacent from(to) a given vertex v is denotedby �+(v)(��(v)) and its cardinality is the out-degree of v, d+(v) = j�+(v)j(in-degree of v,d�(v) = j��(v)j). Its minimumvalue over all vertices is the minimumout-degree,d+,(minimum in-degree,d�) of the digraph G. The minimum degreeof G is d = minfd+; d�g. The maximum degree d is de�ned analogously.A path of length h from a vertex x to a vertex y is a sequence of verticesx = x0; x1; : : : ; xh�1; xh = y where (xi; xi+1) is an arc. A digraph G is stronglyconnected, or simply connected, if for any pair of vertices x; y there exists a pathfrom x to y. The length of a shortest path from x to y is the distance from x toy, and it is denoted by d(x; y). Its maximum value over all pairs of vertices isthe diameter of the digraph, D(G). If G is not strongly connected, D(G) =1.The vertex-connectivity � = �(G) of a digraph G = (V;A) is the minimumcardinality of the subsets of vertices F � V such that G � F is not stronglyconnected or is trivial. The arc-connectivity � = �(G) is the minimum numberof arcs whose deletion disconnects the digraph. For more information see [38].A cycle in a digraph G is a path starting and ending at the same vertex.A hamiltonian cycle is one that contains all the vertices of G exactly once.An eulerian cycle contains all the arcs of G exactly once (but it could repeatvertices).Given two digraphs, G and G0, on N and N 0 vertices, respectively, N �N 0, the index of expandability of G to G0, e(G;G0), is de�ned as the minimumnumber of arcs that have to be deleted from G to obtain G0 by adding N 0 � Nvertices and some appropriate arcs. [10].2.2 The line digraph and the (d;D)-digraph problemThe (d;D)-digraph problem consists in �nding digraphs with order as largeas possible for �xed values of the maximum out-degree d and the diameter D[12, 34, 40]. The order, let say N of a digraph with maximum out-degree d anddiameter D is upper bounded by the Moore bound, M (d;D),M (d;D) = 1 + d+ d2 + : : :+ dD = � D + 1; if d = 1;(dD+1 � 1)=(d� 1); if d > 1.Due to the non-attainability of the Moore bound [13], the study of the5



(d;D)-digraph problem is based in �nding digraphs with order d, diameter Dand order as close to M (d;D) as it would be possible.In the line digraph [36] LG of a digraph G each vertex represents an arcof G, that is, V (LG) = fuv j (u; v) 2 A(G)g. A vertex uv is adjacent to a vertexvw if v = w, that is, whenever the arc (u; v) of G is adjacent to the arc (w; z).The maximum and minimum out and in-degrees of LG are equal to those of G.Therefore, if G is d-regular with order n, then LG is d-regular and has order dn.Besides, if G is a strongly connected digraph di�erent from a directed cycle, thediameter of LG is the diameter of G plus one unit. So, in the same conditionsfor G, LkG is d-regular, has diameter D + k and order dkn, that is, the orderincreases in an asymptotically optimal way in relation to the diameter. As aconsequence, the iteration of the line digraph operation is a good method forthe (d;D)-digraph problem.The set of vertices of the iterated line digraph LkG can be considered asthe set of all paths of length k in G, that is, the set of the sequences of verticesof G with length k + 1, x0x1 : : :xk, where (xi; xi+1) is an arc of G. A vertexx = x0x1 : : :xk in LkG is adjacent to the vertices y = x1 : : :xkxk+1 for all xk+1adjacent from xk. A path of length h in LkG can be written as a sequenceof k + h + 1 vertices of G. The vertices of this path are the subsequences ofk+ 1 consecutive vertices of G. Because of this notation, iterated line digraphsadmit very simple algorithms to �nd short paths between vertices. Observethat between any pair of vertices of LkG there exists at most one path of lengthh � k + 1.2.3 The partial line digraph and the (d;N)-digraph prob-lemThe (d;N )-digraph problem consists in �nding digraphs G with minimumdiam-eter for �xed values of the maximum out-degree d and the order N [12, 34, 40].Since this problem has sense only for d > 1, by the Moore bound, if the diameteris D, N �M (d;D) = dD+1 � 1d� 1From this inequality it is easy to �nd a lower bound for the diameter D,D � dlogd (N (d� 1) + 1)e � 1So, the (d;N )-digraph problem is based in �nding digraphs with maxi-mum degree d, order N and diameter equal, or at least close, to the minimumpossible value.A partial line digraph [33] of a digraph G = (V;E) with minimumdegreeat least 1, is de�ned from a set E0 of arcs of G with V = fv : (u; v) 2 E0g . Itis denoted by LG = (V (LG); E(LG)) with V (LG) = fuv : (u; v) 2 E0g and avertex uv adjacent to the vertices v0w, for each w adjacent from v, where v0 = vif vw 2 V (LG), or any other arbitrary vertex adjacent to w if not.6



Since G has minimum degree at least 1, always exists a set E0 with theconditions asked to construct the partial line digraph. Also, if E0 = E, then LGcoincides with LG. That is, the order of LG is between the order of G and theorder of LG.Partial line digraphs are shown to preserve the minimum degree andincrease the diameter in at most one unit. Then, this technique is a goodstrategy for the (d;N )-digraph problem.Besides, partial line digraphs tend to increase the connectivity (with anatural bound given by the minimum in-degree which is not preserved). Be-sides, easy routing algorithms can be de�ned in them. Finally, the technique isversatile in the sense that simple methods can be used to increase or decreasethe order, maintaining the maximum out-degree constant, and with variationsin the diameter of at most one unit.2.4 Some interesting families of digraphs2.4.1 De Bruijn digraphs and sequencesThe De Bruijn digraph [17] denoted by B(d;D) has set of vertices ZDd . Anyvertex x0x1 : : :xD�1 is adjacent to the vertices x1 : : :xD�1xD, for every xD inZd. Besides of this alphabetical de�nition of the De Bruijn digraphs, it ispossible to de�ne them in terms of iterated line digraphs. In fact, if we denoteby Kd the complete digraph (i.e. with order d and an arc joining every twovertices), then B(d;D) = LD�1Kd.From any of the above de�nitions it is easy to conclude that B(d;D) isd-regular, has diameter D and order dD. Then, since:dD > d� 1d M (d;D)these family of digraphs has good properties for the (d;D)-problem.Since B(d;D) = LD�1Kd, there paths can be represented by sequences ofvertices ofKd. Particularly, cycles can be represented by sequences. A De Bruijnsequence of order D over Zd is the corresponding sequence for a hamiltoniancycle in B(d;D).2.4.2 Reddy-Pradhan-Kuhl digraphsThe De Bruijn digraph B(d;D) can also be arithmetically de�ned as the digraphwith vertex set Zn, with n = dD, and a where the vertex x is adjacent to thevertices dx + t for any value of t in Zd. If we remove the condition n = dD,and let n to be any positive integer, we obtain the generalized De Bruijn orReddy-Pradhan-Kuhl digraphs [55], RPK(d; n). Then, RPK(d; n) = B(d; dD).For any values of d and n, the digraph RPK(d; n) has naturally, ordern and degree d. It is also known that its diameter is dlogd ne. That is, thediameter is minimum whenever (dD � d)=(d � 1) < n < dD, and exceed theminimum value in one unit if dD�1 + 1 � n � (dD � d)=(d� 1).7



They are also iterated line digraphs. More precisely, LRPK(d; n) =RPK(d; dn).2.4.3 Kautz digraphsThe Kautz digraph [52] denoted by K(d;D) has set of vertices ZDd . Any vertexx0x1 : : :xD�1 is adjacent to the vertices x1 : : :xD�1xD, for every xD in Zd, withthe condition xD�1 6= xD.Let K�d denote the complete digraph without loops (i.e. with order d andan arc joining every two di�erent vertices). Another possible de�nition of theKautz digraphs is K(d;D) = LD�1K�d+1.From any of the above de�nitions it is easy to conclude that K(d;D) isd-regular, has diameter D and order dD + dD�1. Then, they are closer to theMoore bound that the De Bruijn digraphs. In fact,dD + dD�1 > d2 � 1d2 M (d;D)so, these family of digraphs has better properties for the (d;D)-problem.Another interesting property is that between any two vertices of K(d;D)there exists a unique path of length D � 1 or D.2.4.4 Imase-Itoh digraphsIn the Imase-Itoh digraph II(d; n) [46, 47], n � d � 2, the set of vertices is Zn,and a vertex x is adjacent to the vertices �dx � t, for t = 1; 2; : : : ; d. Thesedigraphs are also called generalized Kautz, since II(d; dD + dD�1) = K(d;D).For every values of d and n, II(d; n) is d-regular and has order n. It onlyhas loops when n is not a multiple of d+ 1. If D is the diameter of II(d; n), itcan be shown: blogd nc � D � dlogd ne:As a consequence, the diameter of II(d; n) never exceeds the diameter ofthe digraph RPK(d; n). Then the diameter of II(d; n) is minimum or exceedsthe minimum possible value in at most one unit, but is in general, smaller thanthe diameter of the digraph RPK(d; n).2.4.5 BD(d; n) digraphsA bipartite digraph [35] is a digraph whose set of vertices can be partitioned intotwo nonempty sets, such that all the arcs are adjacent from a vertex in one partto a vertex in the other one. The bipartite digraphs BD(d; n) were introducedwhen studying the (d;D)-problem restricted to bipartite digraphs. In this case,in the same way that it was calculated the Moore bound for general digraphs,we can �nd a better one, let us say MB(d;D).For any integers d; n, n � d � 2, the bipartite digraph BD(d; n) has set ofvertices Z2 � Zn = f(�; i) : � 2 Z2; i 2 Zng, and every vertex (�; i) is adjacentto the vertices (1� �; (�1)�d(i+ �) + t), for every t = 0; 1; : : : ; d� 1.8



It is clear that B(d; n) is d-regular, has order 2n, and ifD is the diameter,it holds: blogd nc+ 1 � D � dlogd ne + 1:For some values of n the diameter can be exactly calculated. Particularly,for BD(d; dD�1 + dD�3) the diameter is D. Moreover2(dD�1 + dD�3) > d4 � 1d4 MB(d;D);so we conclude that the digraphs BD(d; dD�1 + dD�3) are a good solution tothe (d;D)-problem for bipartite digraphs.Also in relation to the (d;N )-digraph problem in the bipartite case, thefamily BD(d;N ) has good properties. In fact, it was shown that its diameterexceeds the minimumpossible value arising fromMB(d;D) in at most one unit.Particularly, if N = dD�1 + dD�4k�3, for some integer k, 0 � k � b(D � 3)=4c,the minimum value for the diameter is attained.Finally, BD(d; dD�1 + dD�3) = LD�3BD(d; 1 + d2), and in general,LBD(d; n) = BD(d; dn).2.4.6 Large generalized cyclesA generalized p-cycle is a digraph whose set of vertices is partitioned in p partsthat can be cyclically ordered in such a way that any vertex is adjacent onlyto vertices in the next part. That is, V (G) = [�2Zp V� and the vertices in thepartite set V� are only adjacent to vertices in V�+1, where the sum is in Zp.Observe that, for instance, a digraph is a 1-cycle or a bipartite digraph is ageneralized 2-cycle.The conjunction operator was introduced in [40]. It gives rise to gener-alized cycles. The conjunction of a directed cycle of length p, let say Cp, witha digraph G = (V;A), Cp 
 G, has set of vertices Zp � V and a vertex (�; x)is adjacent to the vertices (� + 1; y) for any y adjacent from x in the digraphG. Observe that Cp 
 G is a generalized p-cycle for any digraph G. The linedigraph of Cp 
 G is isomorphic to Cp 
 LG. In fact, it is not di�cult to seethat the mapping (�; x)(�+ 1; y) 7! (�+ 1; xy) de�nes a digraph isomorphismbetween L(Cp 
 G) and Cp 
 LG.Also in [40], making use of the conjunction operator, were introduced twofamilies of generalized cycles. These are the De Bruijn and Kautz generalizedcycles, BGC(p; d; dk+1) and KGC(p; d; dp+k+dk) respectively. They have largeorder for their degree and diameter.The De Bruijn generalized cycle BGC(p; d; dk+1) is de�ned to be Cp 
B(d; k + 1), where B(d; k + 1) is the De Bruijn digraph with degree d anddiameter k + 1. The De Bruijn digraph is an iterated line digraph, B(d; k +1) = LkK�d , where K�d is the complete digraph with a loop on each vertex.Therefore, BGC(p; d; dk+1) is also an iterated line digraph, BGC(p; d; dk+1) =Cp
LkK�d = Lk(Cp
K�d ) = LkBGC(p; d; d):The set of vertices of the digraph9



BGC(p; d; d) is Zp�Zd and a vertex (�; x) is adjacent to (�+1; y) for any y 2 Zd.This digraph is d-regular and has diameter p. The vertices of BGC(p; d; dk+1),which is d-regular and has diameter p+ k, can be seen as sequences of verticesof BGC(p; d; d) (�; y0)(� + 1; y1) : : : (� + k; yk), where � 2 Zp and yi 2 Zd,i = 0; 1; : : : ; k.The set of vertices of the Kautz generalized cycle KGC(p; d; n) is Zp�Zn.If 0 � � � p � 2, the vertex (�; x) is adjacent to (� + 1; dx + t) for anyt = 0; 1; : : :; d � 1. The vertex (p � 1; x) is adjacent to (0;�dx � (d � t))for any t = 0; 1; : : :; d� 1. The digraph KGC(p; d; dp+ 1) is d-regular and hasdiameter 2p�1. The generalized cycle KGC(p; d; dp+k+dk) is isomorphic to theiterated line digraph LkKGC(p; d; dp+1). Then, it is d-regular and has diameterD = 2p+k�1. The vertices of KGC(p; d; dp+k+dk) can be written as paths oflength k in KGC(p; d; dp+1). That is, sequences (�; y0)(�+1; y1) : : : (�+k; yk),where � 2 Zp and yi are vertices of the generalized cycle KGC(p; d; dp + 1),i = 0; 1; : : : ; kObserve that BGC(p; d; dp) which has diameter 2p � 1 and order pdp,is isomorphic to the directed butter
y Bd(p) [1]. Besides, K(d;D), the Kautzdigraph of degree d and diameterD is the same that KGC(1; d; dD+dD�1), theImase-Itoh digraph [46, 47], GK(d; n), can be de�ned as KGC(1; d; n), and thebipartite digraphs BD(d; n) [35] coincides with KGC(2; d; dD�p+1+ dD�2p+1).For a p-generalized cycle of minimumdegree d and diameterD, the Moorelike bound is MGC(p; d;D) = p(dD+1�dr)dp�1 , being r an integer 0 � r � p� 1 suchthat D � (p � 1) = pm + r. From this inequality can be obtained that theminimumdiameter of a p-generalized cycle of minimum degree d and order n isDGC (p; d; n) = dlogd(n(dp � 1) + 1)e � 1.If D1; D2 are respectively the diameters of KGC(p; d; n) andBGC(p; d; n), then DGC(p; d; n) � D2 � D1 � DGC(p; d; n) + 1:The digraphs BGC(p; d; dk+1), 0 � k � p � 2 attain the boundMGC(p; d;D) when p � D � 2p � 2. Also the bound MGC(p; d; 2p � 1) isattained by the digraph KGC(p; d; dp + 1). More generally, if k > p, for thedigraphs KGC(p; d; dp+k + dk) = LkKGC(p; d; dp+ 1) hold:p(dp+k + dk) > d2p� 1d2p MGC(p; d;D)so the bound is attained when 2p� 1 � D � 3p� 1.2.5 Containers, wide and fault-diametersLet x and y be two vertices of a digraph G. Two paths from x to y are said tobe vertex-disjoint or disjoint if they do not have any internal vertex in common.A container from a vertex x to another vertex y is a set C(x; y) of disjoint pathsfrom x to y. The width w(C(x; y)) of a container C(x; y) is the number of disjointpaths that it contains, and its length, l(C(c; y)), is the maximum length of itspaths. For an integer s, 0 � s � �(G), the s-width-distance from x to y, ds(x; y),is the minimum length of all containers of width s from x to y. Finally, the s-wide-diameter of the digraph G, ds(G), is the maximum s-wide-distance among10



all pairs of di�erent vertices in G. The (s � 1)-vertex-fault-diameter, Ds(G),of a digraph G is the maximum of the diameters of the digraphs obtained byremoving at most s� 1 vertices from G. The (s� 1)-arc-fault-diameter, D0s(G),is de�ned analogously [43, 44, 45].In general, the following relations hold between the wide-diameter andthe fault-diameters: ds(G) � Ds(G) and ds(G) � D0s(G). From the de�nition,d1 = D1(G), d1 = D01(G) and coincide with the diameter ofG. Clearly,Ds(G) �Ds+1(G) and D0s(G) � D0s+1(G). Also there exist some relations between thesetwo parameters, the connectivities and the diameter. If � = �(G) there is acontainer of width � between every pair of distinct nodes. In particular, sinceD(G) = 1 if G is not strongly connected, the vertex-connectivity � = �(G)and the arc-connectivity � = �(G) are, respectively, the minimum values ofs satisfying Ds+1(G) = 1 and D0s+1(G) = 1. Also from Menger's Theoremds+1(G) =1 if s = �(G), and d0s+1(G) =1 if s = �(G).Some fault-diameters have been calculated by �nding disjoint paths be-tween any pair of vertices. For example, for the de Bruijn and Kautz di-graphs [20, 48], the bipartite digraphs BD(d; n) [54], and Flip-trees in [50].The fault-diameters of general iterated line digraphs were consideredin [53]. It was proved there that, if an iterated line digraph LkG has maximumconnectivity, its fault-diameter is bounded by D(LkG) + C, where C dependson some properties of the digraph G, but does not depend on the number ofiterations k.2.6 Basic de�nitions about hypergraphsWe present some of the most relevant concepts we are going to use. For ad-ditional information, see for instance [6, 7, 8, 37]. A hyperdigraph H is a pair(V(H); E(H)), where V(H) is a non-empty set of vertices or nodes, and E(H)is a set of ordered pairs of nonempty subsets of V(H), called hyperarcs. IfE = (E�; E+) is a hyperarc, we say that E� is the in-set, E+ is the out-setof E, and that E joins vertices in E� to vertices in E+. Its in-size(out-size) isthe cardinal of E�, jE�j(jE+j). If v is a vertex, the in-degree(out-degree) of vis the number of hyperarcs containing v in the out-set(in-set), and it is denotedby d�(v)(d+(v)).IfH is a hyperdigraph, its order is the number of vertices, jV(H)j, denotedby n(H). The number of hyperarcs is usually denoted by m(H). The maximumin-size and maximum out-size of H are respectively de�ned bys�(H) = maxfjE�j : E 2 E(H)g , s+(H) = maxfjE+j : E 2 E(H)gSimilarly, the maximum in-degree , maximum out-degree of H ared�(H) = maxfd�(v) : v 2 V(H)g , d+(H) = maxfd+(v) : v 2 V(H)gWe denote s(H) = maxfs+(H); s�(H)g , d(H) = maxfd+(H); d�(H)g. We saythat a hyperdigraph H is d-regular if d�(H) = d+(H) = d. Also H is s-uniformif s�(H) = s+(H) = s. Note that when s = 1, H is a digraph.11



A path of length k from a vertex u to a vertex v in H is an alternatingsequence of vertices and hyperarcs u = v0; E1; v1; E2; v2; : : : ; Ek; vk = v suchthat vi 2 E�i+1, (i = 0; : : : ; k � 1) and vi 2 E+i , (i = 1; : : : ; k). The distancefrom u to v, d(u; v), is the length of the shortest path from u to v. The diameter,D(H), is the maximum distance between every pair of vertices of H.A hyperdigraph is connected if there exists at least one path from eachvertex to any other vertex. The vertex-connectivity, �(H), of a hyperdigraph H,is the minimumnumber of vertices to be removed to obtain a non-connected ortrivial hyperdigraph (a hyperdigraph with only one vertex). Similarly is de�nedthe hyperarc-connectivity, �(H).Any two paths in H are vertex-disjoint if they have no internal verticesin common, and are hyperarc-disjoint if they do not share hyperarcs. TheMenger's theorem stablish that the vertex(hyperarc)-connectivity is the num-ber of vertex(hyperarc)-disjoint paths between any pair of vertices. In fact,such theorem was enunciated for graphs [49], but di�erent proves can be easilyadapted to hyperdigraphs [6].The dual hyperdigraph, H�, of a hyperdigraph H has its set of vertices inone-to-one correspondence with the set of hyperarcs of H, and for every vertexv of H, it has a hyperarc, (V �; V +), such that a vertex e 2 V �, if and only if,v 2 E+ and e 2 V +, if and only if, v 2 E�.The underlying digraph of a hyperdigraph H is the digraph bH =(V( bH);A( bH)) with V( bH) = V(H) and A( bH) = f(u; v) : 9E 2 E(H); u 2E�; v 2 E+g. That is, there is an arc from a vertex u to a vertex v in bH ifand only if there is a hyperarc joining u to v in H. So, paths in bH and H arein correspondence, and this implies D( bH) = D(H) and �( bH) = �(H). We aregoing to denote b� = �( bH) and b� = �( bH).The bipartite representation of a hyperdigraph H is a bipartite digraphR = R(H) = (V (R); A(R)) with set of vertices V (R) = V0(R) [ V1(R), whereV0(R) = V(H) and V1(R) = E(H), and set of arcsA(R) = f(u;E) ju 2 V0; E 2 V1; u 2 E�g [ f(F; v) j v 2 V0; F 2 V1; v 2 F+g:Observe that, if u; v are two vertices of H, a path of length h from u to v in Hcorrespond to a path of length 2h in R(H) and, then, dR(u; v) = 2dH(u; v).2.7 The line hyperdigraph and the (d;D; s)-hyperdigraphproblemThe (d;D; s)-hyperdigraph [37] problem consists of �nding hyperdigraphs withminimumdegree d, diameter D, maximum size s, and order as large as possible.The maximum order for such hyperdigraphs is given by the Moore bound forhyperdigraphs. It is denoted by M (d;D; s), and its value is:M (d;D; s) = 1 + ds+ (ds)2 + : : :+ (ds)D = ((ds)D+1 � 1)=(ds� 1):This bound cannot be attained if D > 1 unless H is a directed cycle [22].Then, in relation to the (d;D; s)-hyperdigraph problem, it is interesting to �ndfamilies of hyperdigraphs with order close to the corresponding Moore bound.12



The line hyperdigraph of H = (V(H); E(H)) is de�ned in [6] as the hy-perdigraph LH = (V(LH); E(LH)),V(LH) = [E2E(H)f(uEv) : u 2 E�; v 2 E+gE(LH) = [v2V(H)f(EvF ) : v 2 E+; v 2 F�gwith (EvF )� = f(wEv) : w 2 E�g and (EvF )+ = f(vFw) : w 2 F+g.The iterated line hyperdigraph Lk(H) is de�ned by Lk(H) = LLk�1(H),with L0(H) = L(H). In Lk(H) the vertices are represented by paths of lengthk in H, v0E1v1E2 : : :Ekvk, the hyperarcs have the form E0v1E1v2 : : : vkEk, andthe paths of length l can be viewed as sequences v0E1v1E2 : : :El+kvl+k. Linehyperdigraphs iterations tend to increase the connectivities.From its de�nition, and in a similar way than for digraphs, the iterationof the line hyperdigraph result a good method for the (d;D; s)-hyperdigraphproblem.2.8 The (d;N; s)-hyperdigraph problemThe (d;N; s)-hyperdigraph problem was introduced in [37] and consists in �nd-ing directed hypergraphs with order N , maximum out-degree d, maximum out-size s and minimum diameter.Analogously than for digraphs, from the Moore bound, for a hyperdigraphwith order N , maximum out-degree d, maximum out-size s and diameter D, itis easy to �nd a lower bound for the diameter D,D � dlogds (N (ds� 1) + 1)e � 1So, the (d;N; s)-hyperdigraph problem study is directed to �nding hy-perdigraphs with maximum degree d, maximum size s, order N and diameterclose to the lower bound founded.2.9 Generalized Kautz and De Bruijn hyperdigraphsIn [8, 6] were introduced the generalized De Bruijn and Kautz hyperdigraphs.There it was shown that they have good order in relation to their degree andsize. In fact, for the case of hyperarc size 1 (digraphs), they are a generalizationof the best known families according to the aforementioned criteria.The generalized Kautz hyperdigraphs, are de�ned as it follows. Let nbe the number of vertices and d the vertex out-degree. Choose the number ofhyperarcs m and the out-size s, with the conditions dn �m 0 and sm �n 0.The generalized Kautz hyperdigraph GK(d; n; s;m) has as vertices the integersmodulo n and as hyperarcs the integers modulo m. The incidence rules are:1. A vertex v is incident to every hyperarc E: E �m dv + �, 0 � � � d� 12. The out-set of the hyperarc E is: u �n �sE � �, 1 � � � s13



If GK(d; n; s;m) is the generalized Kautz hyperdigraph with degree d,order n, size s and m hyperarcs,dGK(d; n; s;m) = II(ds; n)where II(ds; n) is the generalized Kautz digraph.The generalized De Bruijn hyperdigraphs were de�ned with the purposeof having a similarproperty for them. That is, letGB(d; n; s;m) be a generalizedDe Bruijn hyperdigraph with degree d, order n, size s and m hyperarcs,dGB(d; n; s;m) = RPK(ds; n)where RPK(ds; n) is the generalized De Bruijn digraph.Such property can be achieved by two ways. So, we have two non-isomorphic schemes to de�ne a generalized De Bruijn hyperdigraph, let us say,GB1(d; n; s;m) and GB2(d; n; s;m).In the �rst scheme, we give an alphabetical de�nition. Let A;B be twosets of sizes d and s respectively. If k is a positive integer, [AB]k denotes anysequence of 2k elements in the form (a; b; : : : ; a; b) where a 2 A; b 2 B.The vertices of GB1(d; n; s;m) are [BA]D and the hyperarcs [A][BA]D�1[A]. IfE = (E�; E+) is a hyperarc labeled (a0; b1; a1; : : : ; bD�1; aD�1; aD), thenE� = f(�; a0; b1; a1; : : : ; bD�1; aD�1) : � 2 BgE+ = f(b1; a1; : : : ; bD�1; aD�1; �; aD) : � 2 BgFrom the vertices point of view, the hyperarcs such that a vertex s is adjacentto them, are founded by shifting the vertex label to the left by one, disposing ofb1, and introducing a new element of A at the right end. The set or hyperarcsthat a vertex is adjacent from is founded by shifting all letters (except AD) toright by one (disposing of bD) and adding an element of A from the left end.In the second scheme, GB2(d; n; s;m) is de�ned arithmetically. First weimpose dn �m 0 and sm �n 0. Assume that the vertices are numbered from0 to n � 1 and the hyperarcs from 0 to m � 1. Then, the vertex v is adjacentto the hyperarcs E� �m dv + �, for any � = 0; : : : ; d� 1. The out-set of thehyperarc E consists of the vertices Vi �n sE + �, for any � = 0; : : : ; s� 1.For the generalized Kautz hyperdigraph of degree d and size s on n ver-tices and m hyperarcs, the diameter D is such that n = (ds)D + (ds)D�1. Inboth schemes of the generalized De Bruijn digraph of degree d and size s on nvertices and m hyperarcs, G1(d; n; s;m) or G2(d; n; s;m), the diameter,D, hasthe property that n = (ds)D.3 Containers in large generalized cycles3.1 IntroductionBy Menger's theorem it is possible to obtain upper bounds for the fault-diameters from disjoint paths of bounded length between every pair of vertices.14



To evaluate how good are they, is usual to �nd also lower bounds and then com-pare them with the upper ones. This technique was introduced in [48] for the DeBruijn and Kautz digraphs, and was also used in [54] for the bipartite digraphsBD(d; dD�1+dD�3). In [48] it was proved the existence of a container of widthd and length at most the diameter plus two unit between any two vertices inthe d-regular De Bruijn or Kautz digraphs. Besides, it was shown that at mosttwo paths have length equal to the diameter plus two units. This result wasimproved in [20]. There it was proved that at most one path has length equal tothe diameter plus two units. For the bipartite digraphs BD(d; dD�1+dD�3) theit was proved in [54] the same result that in [48] for the De Bruijn and Kautzdigraphs.In all the above cases, paths are given and proved to be disjoint makinguse of the fact that the families treated are iterated line digraphs. We �ndlower bounds for fault-diameters of any generalized cycle and calculate them forthe above mentioned families. Then, we compare these values with the upperbounds obtained by giving disjoint paths in them. From this comparison weobtain the exact value for the wide and fault-diameters. Moreover, we showthat such values are optimum for these families.3.2 Lower boundsIf G is a digraph with Ds(G) = D0, there exist at least s paths (not necessarilydisjoint) of length at most D0 between any pair of non-adjacent vertices of G.Let G be a generalized p-cycle with maximum out-degree d and ordern. Let r such that Ds(G) = D0, with D0 � (p � 1) = pm + r and 0 � r �p � 1. Then, if x 2 V��r and y 2 V� are two non-adjacent vertices of G, theremust exist s paths of length at most pm + r from x to y. There are at mostdr(1 + dp + d2p + : : :+ dpm) paths of length less or equal than pm + r from avertex in V��r to the vertices in V�. Therefore,n = X�2Zp jV� j � 8<: p(1 + b(dp + d2p + : : :+ dpm)=sc); if r = 0;p(d+ b(dp+1 + d2p+1 + : : :+ dpm+1)=sc); if r = 1;p(bdr(1 + dp + : : :+ dpm)=sc); if r 6= 0; 1:Then, Ds(G) = D0 = p(m + 1) + r + 1 � `r, where`r = 8<: dlogd(s(np � 1)(dp � 1) + dp)e � 1; if r = 0;dlogd(s(np � d)(dp � 1) + dp+1)e � 1; if r = 1;dlogd(np s(dp � 1) + dr)e � 1; if r 6= 0; 1:Therefore, if G is a generalized p-cycle with maximum out-degree d and ordern,then, Ds(G) � min0�r�p�1 `r = `1. We have found a lower bound for the(s � 1)-vertex-fault-diameter.Proposition 3.1 Let G be a generalized p-cycle with maximum out-degree dand order n. Then, for any s = 2; : : : ; d,15



ds(G) � Ds(G) � Dmin(s; p; d; n) = llogd �s�np � d� (dp � 1) + dp+1�m� 1: 2If G is a digraph with D0s(G) = D0, there must exist at least s+ 1 pathsof length at most D0 between any pair of di�erent vertices. Reasoning in thesame way as in the vertex case, we can obtain a lower bound for the (s � 1)-arc-fault-diameter of a generalized cycle.Proposition 3.2 Let G be a generalized p-cycle with maximum out-degree dand order n. Then, for any s = 2; : : : ; d,d0s(G) � D0s(G) � D0min(s; p; d; n) = llogd �s�np � 1� (dp � 1) + dp�m� 1: 2So, we have obtained lower bounds for the s-wide-diameter and the s-fault-diameter.The values of these bounds for the families we are studying are:� For BGC(p; d; dk+1), if s = 2; : : : ; d:dmins � Dmins (p; d; pdk+1) = p+ k + 1;d0mins � D0mins (p; d; pdk+1) = p + k + 1:� For KGC(p; d; dp+k + dk), if s = 2; : : : ; d:dmins � Dmins (p; d; p(dp+k + dk)) = 2p+ k;d0smin � D0mins (p; d; p(dp+k + dk) = 2p+ k:That is, the bounds on vertex and arc-fault-diameters, are the diameter plusone unit in both cases.3.3 Containers and fault-diameters3.3.1 The De Bruijn generalized cycles BGC(p; d; dk+1)Disjoint paths of bounded length between any two vertices of the generalized DeBruijn digraph BGC(p; d; dk+1), p � 2, are given in this section. Particularly,we prove, in a constructive way, that there exists a container of width d andlength at most p+k+2 between any pair of di�erent vertices ofBGC(p; d; dk+1).Besides, only one path of this container has length p+k+2 and the other pathshave length at most p+ k + 1.First of all, we present these containers in the smallest digraph in thisfamily: the generalized cycle BGC(p; d; d) = Cp 
 K�d . Next, we show how toconstruct containers of bounded length between any pair of adjacent vertices ofBGC(p; d; dk+1). Finally, taking into account that these digraphs are iteratedline digraphs, we prove that containers between any pair of di�erent vertices canbe founded from containers between vertices in a smaller digraph in the samefamily. 16



Proposition 3.3 Let x and y be two (not necessarily di�erent) vertices of thegeneralized cycle BGC(p; d; d) = Cp 
K+d , p � 2. There exists in this digrapha container of width d from x to y with length at most p+ 1.Proof : We can suppose that x is in the partite set V0 = f0g � Zd and thaty 2 Vh = fhg � Zd, 1 � h � p (of course, Vp = V0). If p � 3 and h 6= 1; 2, thereexist many di�erent ways to �nd a container with width d and length h fromx to y. Any path of these containers is in the form x�i1 : : : �ih�1y, 1 � i � d,where �ir 2 Vr and �ir 6= �jr if i 6= j. If p � 2 and h = 1, we have a path oflength 1, the arc (x; y), and we can take d� 1 disjoint paths with length p+ 1in the form x�i1 : : : �ip�1�ipy, 1 � i � d � 1, where �ir 2 Vr, �ir 6= �jr if i 6= j,�i1 6= y and �ip 6= x. Finally, if h = 2 there are exactly d paths of length 2 fromx to y, which are disjoint.2Let x, y be a pair of adjacent vertices of BGC(p; d; dk+1). Since thisdigraph is the iterated line digraph Lk(Cp 
 K�d ), we can put x = x0x1 : : :xkand y = x1 : : :xkxk+1, where xr, 0 � r � k+1, is a vertex of Cp
K�d . Besides,we can suppose that xr = (r; j) 2 Zp � Zd, that is, that xr is a vertex inthe partite set Vr of the generalized cycle Cp 
 K�d . We want to construct ddisjoint paths with length at most p + k + 2 from x to y. The �rst of thesepaths is the arc (x;y) = x0x1 : : :xkxk+1. The other paths are going to beconstructed from disjoint paths from xk to x1 in Cp 
 K�d and will have theform x0x1 : : :xkak+1ak+2 : : :ak+rx1 : : :xkxk+1 , with r � p + 1. Since thesepaths can not contain the arc (x;y), we must take ak+1 6= xk+1 and ak+r 6= x0.That is, we have to �nd a container of width d � 1 and length at most p + 2from xk to x1 in Cp 
K�d such that all the paths in it have their �rst and lastarcs, respectively, di�erent from (xk; xk+1) and (x0; x1).If p � 3 and k � h (modp), 1 � h � p � 2, then xk = x1 or 3 �d(xk; x1) = p � h + 1 � p. In this case, we consider d� 1 paths from xk to x1in the following form: xk�sh+1�sh+2 : : :�spx1, where 1 � s � d� 1, �sh+1 6= xk+1,�sp 6= x0 and �sr 6= �s0r if s 6= s0. These paths are disjoint and have lengthp� h+ 1.If k � p� 1 (modp), then d(xk; x1) = 2 and there are exactly d paths oflength 2 from xk to x1. If xk+1 = x0, we consider the d � 1 paths of length 2that avoid the vertex x0: the paths xk�spx1, where 1 � s � d� 1, �sp 6= x0 and�sp 6= �s0p if s 6= s0. If xk+1 6= x0, we can take only d�2 of these paths: the pathsxk�spx1, where 1 � s � d�2, �sp 6= x0; xk+1 and �sp 6= �s0p if s 6= s0. In this case,we have to consider also a path with length p+ 2: xkx0�d�11 : : :�d�1p�1xk+1x1.If k � 0 (modp), then d(xk; x1) = 1. In this case, we take d � 1 pathsof length p + 1: xk�s1 : : : �spx1, where 1 � s � d � 1, �s1 6= xk+1, �sp 6= x0 and�sr 6= �s0r if s 6= s0.Then, we can construct d paths from x to y in BGC(p; d; dk+1):� A path of length 1, the arc A = x0x1 : : :xkxk+1:17



� d� 1 or d� 2 paths with length D � h+ 1 � D + 1,Qs = x0x1 : : :xk�sh+1�sh+2 : : :�spx1 : : :xkxk+1;where k � h (modp) and 0 � h � p� 1.If k � p� 1 (modp), we may need one path with length D + 2,R = x0x1 : : :xkx0�d�11 : : :�d�1p�1xk+1x1 : : : xkxk+1Proposition 3.4 If s 6= t, the paths Qs and Qt are disjoint.Proof : If qs;j is the j-th vertex of the path Qs,qs;j = 8<:xj : : : ; xk�sh+1 : : :�sh+j j = 1; : : : ; p� hxj : : :xk�sh+1 : : :�spx1 : : :xj�p+h j = p� h + 1; : : : ; k�sh+j�k : : : �spx1 : : :xj�p+h j = k + 1; : : : ; k + p� hand, of course, we have the analogous expressions for the vertices of the pathQt. We have to prove that qs;j 6= qt;i for any i; j = 1; : : : ; k + p � h. By thesymmetry of the paths, it su�ces to compare qs;j with qt;i when j � i. Thecase i = j is trivial because �sr 6= �tr for any r = h+ 1; : : : ; p. Besides, since thepaths are in a p-cycle, it is only necessary to prove that qs;j 6= qt;i when i � j(modp) and i � j + p.Let us suppose that there exist i; j, where i � j (modp) and i � j + p,such that qs;j = qt;i.If 1 � j � p� h and p� h+ 1 � i � k, we have thatqs;j = xj; : : : ; xk; �sh+1; : : : ; �sh+j = xi; : : : ; xk; �th+1; : : : ; �tp; x1 : : : ; xi�p+h = qt;iLet us consider the subsequences formed by the vertices of Cp
K�d in the partiteset Vh+j :xh+jxh+p+j : : : xk�p+j�sh+j = xh+i : : :xk�p+i�th+jxh+j : : : xi�p+hObserve that h+ j � p. We consider the equivalence relation digraph [48] givenby this equality. The arcs of the equivalence relation digraph join a symbolappearing in the �rst sequence with the symbol that appears in the same placein the second sequence. In this digraph, the vertices xr have in-degree and outdegree equal to one, �sh+j have in-degree 0 and out-degree 1 and �th+j have in-degree 1 and out-degree 0. Then, there exists in the equivalence relation digrapha path from �sh+j to �th+j . That means that �sh+j = �th+j, a contradiction.If p� h+ 1 � j < i � k, we consider j0 such that j0 � j � i (modp) and0 � j0 � p� 1. From the equality qs;j = qt;i, we take the subsequences formedby the vertices in the partite set Vp of Cp 
K�d :xj+p�j0 : : :xk�h�spxp : : :xj�j0�` = xi+p�j0 : : :xk�h�tpxp : : : xi�j0�`where ` = 0 if j0 � p� h and ` = p otherwise. As before, using the equivalencerelation digraph, we obtain that �sp = �tp, a contradiction.18



The remaining case, p�h+1 � j � k and k+1 � i � k+p�h, is solvedanalogously.2The following propositions are proved in a similar way.Proposition 3.5 The paths Qs and R do not contain the arc A.Proposition 3.6 The path R is disjoint with any path Qs.Therefore, we have constructed d disjoint paths between any pair of ad-jacent vertices of BGC(p; d; dk+1):one of length 1, d � 2 of length at most p + k + 1 and one of length atmost p+ k + 2.Theorem 3.7 Let x, y be any pair of di�erent vertices of the generalized cycleBGC(p; d; dk+1), p � 2. There exists a container from x to y of width d andlength less than or equal to p+k+2 = D+2 composed by one path with minimumlength d(x;y), d�2 with length at most D+1 and one of length at most D+2.Proof : We are going to prove this theorem by induction on k. If k = 0, the resultis true by Proposition 3.3. Let x, y be two di�erent vertices of BGC(p; d; dk+1),k � 1. We have proved the existence of these paths if d(x;y) = 1. Let us sup-pose that d(x;y) � 2. Since BGC(p; d; dk+1) is isomorphic to the line digraphLBGC(p; d; dk), we can put x = x0x1 and y = y0y1, where x0, x1, y0 and y1are vertices of BGC(p; d; dk). Besides, x1 6= y0, because x is not adjacent toy. Then, in BGC(p; d; dk) there exists a container from x1 to y0 with width dand length at most p + k + 1. In this container there are one path of lengthd(x1; y0), d� 2 of length at most p+ k, one of length at most p+ k+ 1. Thesepaths induce in the line digraph LBGC(p; d; dk) = BGC(p; d; dk+1) a containerof width d from x = x0x1 to y = y0y1, with one path of minimum lengthd(x;y) = d(x1; y0) + 1, d� 2 of length at most p+ k+ 1 = D + 1 and one pathof length at most p+ k + 2 = D + 2.2As a corollary of Theorem 3.7 we obtain the values of the s-wide-diameterand the s-fault-diameters of BGC(p; d; dk+1). We can see that these values arealmost optimal by comparing them with the lower bounds given in Proposi-tions 3.1 and 3.2. In e�ect, for any s = 2; : : : ; d,Dmin(s; p; d; pdk+1) = D0min(s; p; d; pdk+1) = p+ k + 1Theorem 3.8 Let G be the generalized cycle BGC(p; d; dk+1), p � 2. Then� ds(G) = D0s(G) = p + k + 1 = D + 1 if 2 � s � d � 1 or s = d and0 � k � p� 2.� dd(G) = D0d(G) = p+ k + 2 = D + 2 if k � p� 1.� ds(G) = Ds(G) = p + k + 1 = D + 1 if 2 � s � d � 1 or s = d and0 � k � p� 1. 19



� dd(G) = Dd(G) = p+ k + 2 = D + 2 if k � p.Proof : It is obvious fromPropositions 3.1 and 3.2 and Theorem 3.7 that ds(G) =Ds(G) = D0s(G) = p + k + 1 = D + 1 if 2 � s � d � 1. The minimum valueof k for which we need a path with length D + 2 (the path R) in order toconstruct the d disjoint paths is k = p � 1. Then, D0d(G) = Dd�1(G) = D + 1if 0 � k � p � 2. Since in the digraph BGC(p; d; dp�1) there are containers ofwidth d and length at most p+k�1 between any pair of di�erent vertices, in thedigraph BGC(p; d; dp) = LBGC(p; d; dp�1) we can �nd a container of width dand length at most p+ k between any pair of non-adjacent vertices. Therefore,Dd(G) = D + 1 if k = p � 1. Finally, let us consider in BGC(p; d; dp) thevertices x = x0x1 : : :xp�1 and y = x1 : : : xp�1xp, where x0 = (0; 0) 2 Zp � Zdand xp = (0; d � 1). If we remove from BGC(p; d; dp) the d � 1 arcs ei =x0x1 : : :xp�1�ip,where �ip = (0; i), 1 � i � d � 1, the distance from x to y inthe resulting digraph will be equal to 2p + 1 = D + 2. Using the line digraphtechnique, it is not di�cult to �nd, for any k > p � 1, d� 1 vertices or arcs tobe removed from BGC(p; d; dk+1) in order to obtain a digraph with diameterp+k+2. Therefore, D0d(G) = D+2 if k � p�1 and Dd(G) = p+k+2 = D+2if k � p.23.3.2 The Kautz generalized cycles KGC(p; d; dp+k + dk)Proceeding in the same way as in Section 3.3.1, �rst we �nd disjoint pathsbetween vertices in the digraph KGC(p; d; dp+1), which is the smallest digraphin this family. Next, we construct disjoint paths of bounded length between anypair of adjacent vertices of KGC(p; d; dp+k + dk).We recall now some properties in [40] of the generalized cycleKGC(p; d; dp + 1). If x and y are two di�erent vertices in the same partiteset of KGC(p; d; dp + 1), then d(x; y) = p and there is only one shortest pathform x to y. Besides, there is no cycle of length p in this digraph. For anyvertex x there are exactly 1 + d+ d2 + : : :+ dp vertices y such that d(x; y) � p.That is, if d(x; y) � p there is only one path from x to y with length at most p.Proposition 3.9 Let x, y be any pair of vertices of KGC(p; d; dp+1)). Thereexists a container of width d from x to y with length at most 2p = D + 1.Proof : We can suppose that x 2 V0 and y 2 Vh, where 1 � h � p. let�+(x) = fz1; z2; : : : ; zdg be the set of the vertices that are adjacent from x and��(y) = fv1; v2; : : : ; vdg be the set of vertices that are adjacent to y.If h = 1 and (x; y) is not an arc, Since there is a unique path of lengthp from any zi to y, we have exactly d paths of length p + 1 from x to y: thepaths xzi : : : y, 1 � i � d. Using the properties of KGC(p; d; dp+ 1)), it is notdi�cult to see that these paths are disjoint. If (x; y) is an arc, we can supposethat z1 = y. In this case, we have a path of length 1, the arc (x; y), and d � 1paths of length p+ 1: the paths xzi : : : y, 2 � i � d. As before, these paths aredisjoint. 20



If h � 2 and d(x; y) = h, we can suppose that the unique path of minimumlength from x to y has the form xz1 : : : v1y (where z1 = v1 if h = 2). Let �be any permutation in f2; : : : ; dg. For any i = 2; : : : ; d, let wi 2 Vh�1 be anyvertex such that d(zi; wi) = h�2 and consider the path xzi : : :wi : : : v�iy, whichis a path from x to y with length p + h � 2p. Observe that, since wi 6= v�iif 2 � i � d, there is a unique path of length p from wi to v�i. By theproperties of the generalized cycle KGC(p; d; dp + 1)), these d paths from x toy are disjoint. If d(x; y) = p + h or h = p and x = y, we can consider anypermutation � in f1; 2; : : :; dg and construct d paths from x to y with length2p: the paths xzi : : :wi : : : v�iy, where i = 1; : : : ; d and wi is a vertex in Vh�1such that d(zi; wi) = h� 2. As before, these paths are disjoint.2Let x and y be any pair of adjacent vertices of the generalized cycleKGC(p; d; dp+k + dk). As it was done in Section 3.3.1 for BGC(p; d; dk+1), weconstruct a container from x to y of width d and bounded length . Since that di-graph is isomorphic to the iterated line digraph LkKGC(p; d; dp+1), its verticescan be written as paths of length k in KGC(p; d; dp + 1). Then, we can writex = x0x1 : : :xk and y = x1 : : :xkxk+1, where xi, i = 0; 1; : : : ; k + 1 are verticesof the generalized cycle KGC(p; d; dp+ 1). We are going to �nd d� 1 disjointpaths from x to y that do not contain the arc A = (x;y). These paths are goingto be to be constructed from disjoint paths from xk to x1 in KGC(p; d; dp+ 1)and will have the form x0x1 : : :xkak+1ak+2 : : : ak+rx1 : : :xkxk+1, where r � 2p,ak+1 6= xk+1 and ak+r 6= x0. Therefore, we must �nd in KGC(p; d; dp + 1) acontainer C(xk; x1) with width d� 1 and length at most 2p+ 1 such that their�rst and last arcs must be, respectively, di�erent from (xk; xk+1) and (x0; x1).Lemma 3.10 Let x and y be two vertices of KGC(p; d; dp + 1) such thatd(x; y) 6� 1 (modp). Let us consider z 2 �+(x) and v 2 ��(y). Then, thereexists a container of width d� 1 and length at most 2p, avoiding the arcs (x; z)and (v; y).Proof : We can suppose that x 2 V0 and y 2 Vh, where 2 � h � p. If d(x; y) = h,let xz1 : : : v1y be the unique shortest path from x to y (if h = 2, then z1 = v1).We have to distinguish three cases.Case 1: h = p and x = y; or d(x; y) = p+h; or d(x; y) = h, z = z1 and v = v1;or d(x; y) = h, z 6= z1 and v 6= v1. By the proof of Proposition 3.9, we can�nd in this case a set of d disjoint paths from x to y with length at most 2pcontaining a path in the form xz : : : vy. The other d� 1 paths are the paths weare looking for.Case 2: d(x; y) = h, z = z1 and v 6= v1. Let us consider a vertex z2 2�+(x), z2 6= z and a vertex u 2 V1 such that u 6= z1 and d(u; v1) = h � 1.Then, u =2 �+(x) and there is a path with length p from z2 to u. Let usconsider the following d � 1 paths with length p + h from x to y: the pathxz2 : : :u : : : v1y,and the paths xzi : : :wi : : : v�iy, 3 � i � d, constructed as in theproof of Proposition 3.9, where v�i 6= v. It is not di�cult to prove that thesepaths are disjoint and do not contain neither the vertex z nor the vertex v.21



Case 3: d(x; y) = h, z 6= z1 and v = v1. This case is analogous to Case 2.2Lemma 3.11 Let x and y be two vertices of KGC(p; d; dp + 1) such thatd(x; y) � 1 (modp). Let us consider z 2 �+(x) and v 2 ��(y). Then, thereexists a container of width d�1 and length at most 2p+1 from x to y such thatall the paths in it have their �rst and last arcs are, respectively, di�erent from(x; z) and (v; y). Besides, at most one of the paths in the container have length2p+ 1.Proof : We can suppose that x 2 V0 and y 2 V1. As we have seen in the proof ofProposition 3.9, there are exactly d paths, which are disjoint, of length at mostp+ 1 from x to y.Case 1: d(z; v) = p�1, or x = v and y = z. If d(z; v) = p�1, the path xz : : : vyis one of the d disjoint paths from x to y with length at most p+ 1. The otherd� 1 paths are disjoint and avoid the arcs (x; z) and (v; y). If x = v and y = z,the two forbidden arcs are equal to (x; y). The other d � 1 paths with lengthp+ 1 from x to y are the paths we are looking for.Case 2: d(z; v) = 2p� 1, x 6= v and y 6= z. In this case, there are two di�erentpaths from x to y with length p + 1 containing one of the forbidden arcs: thepaths xz : : : v0y and xz0 : : : vy. Then, there are d � 2 paths from x to y withlength at most p+ 1 avoiding the arcs (x; z) and (v; y). Let w 2 V0, w 6= v, bea vertex such that d(z0; w) = p � 1. Then, w =2 ��(y) and there exists a pathof length p from w to v0. The path xz0 : : :w : : : v0y, which has length 2p+ 1, isdisjoint with the above d� 2 paths and do not contain neither z nor v.Case 3: (x; y) is an arc, x = v and y 6= z. Then, the d paths from x to y withlength at most p+1 are: the arc (x; y), the path xz : : : v0y and d� 2 paths withlength p + 1 that do not contain any of the forbidden arcs. Let w 2 V1, w 6= z,be a vertex such that d(w; v0) = p � 1. Then, w =2 �+(x) and there is a pathwith length p from y to w. The path xy : : :w : : : v0y, which has length 2p + 1,is disjoint with the other d� 2 paths, its �rst arc is di�erent from (x; z) and itslast arc is di�erent (v; y).Case 4: (x; y) is an arc, x 6= v and y = z. Analogously to Case 3, we have d�2paths with length p+1 that do not contain any of the forbidden arcs. Let z0 bethe vertex such that xz0 : : : vy is a path of length p+ 1. Let w 2 V0, w 6= v, bea vertex such that d(z0; w) = p� 1. Then, w =2 ��(y) and there is a path withlength p from w to x. The path xz0 : : :w : : :xy, which has length 2p + 1, andthe above d� 2 paths are the paths we are looking for.2Let x = x0x1 : : :xk and y = x1 : : :xkxk+1 be any pair of adjacent verticesof the generalized cycle KGC(p; d; dp+k + dk). Let h be the integer such thath � k (modp) and 1 � h � p. By Lemmas 3.10 and 3.11, there exist a containerC(xk; x1) in KGC(p; d; dp+1) with width d� 1 and length at most 2p+1 suchthat every path in the container has the �rst and the last arcs are, respectively,di�erent from (xk; xk+1) and (x0; x1). Using these paths, we construct d � 122



paths from x to y with length at most 2p+ k + 1 = D + 2. By doing that, wehave obtained d paths from x to y that will be proved to be disjoint. The �rstof these paths is the arc A = (x;y) = x0x1 : : : xkxk+1:There can be one path with length k + p� h+ 1 � D � p+ 1,P = x0x1 : : :xk�1h+1�1h+2 : : :�1px1 : : :xkxk+1;d� 1, d� 2 or d� 3 paths with length k + 2p� h+ 1 � D + 1,Qs = x0x1 : : :xk�sh+1�sh+2 : : : �sp : : : �s2px1 : : : xkxk+1;and, if h = p, we may need one path with length D + 2,R = x0x1 : : :xk�d�11 : : :�d�1p : : :�d�12p x1 : : :xkxk+1:It can be proved that these paths are disjoint by using the same techniques as inSection 3.3.1. The proof of the following theorem is the same as in Theorem 3.7Theorem 3.12 Let x, y be any pair of di�erent vertices of the generalized cycleKGC(p; d; dp+k+dk), p � 2. There exists a container from x to y with width dand length less than or equal to 2p+k+1 = D+2. Moreover, in such containerthere is one path with minimum length d(x;y), and there are d � 2 paths withlength at most D + 1 and one of length at most D + 2. 2As a corollary of Theorem 3.12 we obtain the value of the s-wide-diameterds(G), and the s-fault-diameters Ds(G), D0s(G) for G = KGC(p; d; dp+k + dk).The following theorem can be proved in the same way as Theorem 3.8.Theorem 3.13 Let G be the generalized cycle KGC(p; d; dp+k + dk), p � 2.Then� ds(G) = D0s(G) = 2p + k = D + 1 if 2 � s � d � 1 or s = d and0 � k � p� 1.� dd(G) = D0d(G) = 2p+ k + 1 = D + 2 if k � p.� ds(G) = Ds(G) = 2p+k = D+1 if 2 � s � d�1 or s = d and 0 � k � p.� dd(G) = Dd(G) = 2p+ k + 1 = D + 2 if k � p+ 1.Again, the bounds obtained are almost optimal by comparing them withthe lower ones given in Propositions 3.1 and 3.2. In e�ect, for any s = 2; : : : ; d,Dmin(s; p; d; p(dp+k + dk)) = D0min(s; p; d; p(dp+k + dk)) = 2p+ k:23



3.4 Fault-tolerant routingsUsing the containers constructed in Sections 3.3.1 and 3.3.2, routing algorithmsfor BGC(p; d; dk) andKGC(p; d; dp+k+dk) are respectively given. We avoid de-tails of such algorithms that depend on the implementation of the network [21],to focus on possibilities to make use of the containers. [27]We assume that before the routing algorithms, other algorithms wererunning on the network. These algorithms recognize the faulty elements (nodesand links), giving a list of them as output. Note that this is not a restrictionsince is the most common way in which routers work when no acknowledgemessages are sent [59].3.5 The De Bruijn generalized cyclesLet u; v be any two vertices of the BGC(p; d; dk+1), let say,u = (c1; : : : ; cr; a0; a1; : : : ; ak�r), v = (a0; a1; : : : ; ak�r; b1; : : : ; br)with all their coe�cients in Cp 
K+d , and r the distance from u to v.If r = 1 we just have a description of the minimum length paths from uto v. Otherwise, we consider vertices u0 and v0 in BGC(p; d; dk�r),u0 = (c1; a0; a1; : : : ; ak�r)v0 = (a0; a1; : : : ; ak�r; br)with all coe�cients in Cp 
K+d .Now d(u0; v0) = 1, so we know paths from u0 to v0 and can go from u to v bythe paths from u0 to v0.Then, a brief description of the routing algorithm could be:Input: u; v vertices in BGC(p; d; dk+1)� Calculate r, the distance from u to v.� If r = 1 choose the path of minimum length not intersecting the list offaulty nodes.� If r 6= 1 take u0; v0 as above. Construct paths between u0 and v0 andextend them to go from u to v. Choose the one of minimum length fromthe paths which does not have any faulty element.To calculate the distance between the input vertices, the most naturalway is to compare the corresponding sequences to have:r = d(u; v)u = c1; : : : ; cr; a1; : : : ; ak�r+1v = a1; : : : ; ak�r+1; b1; : : : ; brKnowing the distance, we know also d disjoint paths from u to v. In fact, if theyare adjacent, we have a direct description of them. If not, we take two adjacentvertices: 24



u0 = cr; a1; : : : ; ak�r+1v0 = a1; : : : ; ak�r+1; b1and from paths between them, arise the ones we want.At this point, we have to choose a path of minimum length in the aboveset which does not contain neither a faulty node nor a faulty arc. We can doit in several ways. A �rst idea could be to construct all paths by increasing or-der of length, and start with the shortest until we �nd one with the conditionsdesired. Another option could be to compare the nodes and arcs of each pathwith the faulty ones during its construction. That is, could be not necessary toconstruct the whole container. So, we construct one path, check the conditions,and only if it is necessary, we proceed constructing another one. Also, we canimprove this idea, checking the conditions during the construction. That is, inthe precise moment we add a node -and obviously an arc- we check that it isnot a faulty one. If there are no other alternative, we discard this constructionand start with another one. Naturally, we should start trying with paths inincreasing order of length.Example: Let d = 7, p = 4 and k = 5. We want a path from u to v, vertices ofBGC(4; 7; 117:649) = L5(C4 
K+7 ), with:u = (3; 1)(4; 6)(1; 3)(2; 0)(3; 2)(4; 6),v = (1; 3)(2; 0)(3; 2)(4; 6)(1; 1)(2; 3)Since d(u; v) = 2, the path must be constructed recursively from other betweenvertices at distance 1. Let:u0 = (4; 6)(1; 3)(2; 0)(3; 2)(4; 6), v0 = (1; 3)(2; 0)(3; 2)(4; 6)(1;1)Now, d(u0; v0) = 1, so we already know 7 paths from u0 to v0:� The arc (u0; v0): [(4; 6)(1; 3)(2; 0)(3; 2)(4; 6)(1;1)]� Paths based on others from (4; 6) to (1; 3):[(4; 6)(1; 3)];[(4; 6)(1; �s1)(2; �s2)(3; �s3)(4; �s4)(1; 3)], with �s1 6= 1; 3 and �s4 6= 6.These paths give rise to:[(4; 6)(1; 3)(2; 0)(3;2)(4; 6)(1; 3)(2;0)(3;2)(4; 6)(1; 1)][u0(1; �s1)(2; �s2)(3; �s3)(4; �s4)v0], with �s1 6= 1; 3 and �s4 6= 6.From these 7 paths from u0 to v0, by recursion we obtain the following 7 from uto v:� [(3; 1)(4; 6)(1; 3)(2; 0)(3;2)(4;6)(1; 1)(2; 3)]25



� [(3; 1)(4; 6)(1; 3)(2; 0)(3;2)(4;6)(1; 3)(2; 0)(3;2)(4;6)(1;1)(2; 3)]� [u(1; �s1)(2; �s2)(3; �s3)(4; �s4)v], with �si = 1; : : : ; 5, �s1 6= 1; 3, �s4 6= 6 and�si 6= �ti if s 6= tNow, we have constructed d paths from u to v, and it only remains toselect one of minimum (or minimal) length not containing faulty elements.Let F be the set of faulty nodes and L the set of faulty links. For example,consider F and E respectively:f(2; 0)(3; 2)(4; 6)(1; 3)(2;0)(3; 2); (4;5)(1;4)(2; 0)(3; 2)(4;5)(1;3)g:f(3; 1)(4; 6)(1; 3)(2; 0)(3;2)(4;6)(1; 1)g.The algorithm discards the �rst two paths and one of the third class.Now, if F and E are respectively:f(2; 1)(3; 2)(4; 3)(1; 5)(2;0)(3;1); (4;5)(1;4)(2;0)(3; 2)(4;5)(1;3)gf(2; 0)(3; 2)(4; 6)(1; 3)(2;0)(3; 2)(4; 6)(1;1)(4;6)(1; 3)(2; 0)(3;2)(4;6)(1; 1)(2; 3)g.The algorithm discards the second path and one or two of the third class.3.5.1 The Kautz generalized cyclesLet u; v be any two vertices of KGC(p; d; dp+k + dk), let say,u = (c1; : : : ; cr; a0; a1; : : : ; ak�r)v = (a0; a1; : : : ; ak�r; b1; : : : ; br)with all their coe�cients in KGC(p; d; dp+1) and r the distance from u to v.If r = 1 we just have a description of the minimum length paths from uto v. Otherwise, we consider vertices u0 and v0 in KGC(p; d; dp+k + dk):u0 = (c1; a0; a1; : : : ; ak�r)v0 = (a0; a1; : : : ; ak�r; br)with their all coe�cients in KGC(p; d; dp+1).Now, d(u0; v0) = 1 and we know the paths from u0 to v0. These allow usto go from u to v.A short description of the routing algorithm could be:Input u; v in KGC(p; d; dp+k + dk):� Calculate r, the distance from u to v.� If r = 1 choose the path of minimum length which does not intersect thelist of faulty nodes.� If r 6= 1 �nd vertices u0; v0 as above. Construct paths between u0 and v0and extend them to paths from u to v. Choose one of minimum lengthwhich does not intersect the list of faulty nodes.26



That is, the routing strategy is the same that for BGC(p; d; dk).Example: Let take d = 4, p = 5 and k = 6. We want a path from u to v, verticesof KGC(5; 4; 1025) = L4(C5 
GK(4; 1025)), with:u = (5; 77)(1; 715)(2; 814)(3;182)(4; 297)(5; 170)(1;681)v = (3; 182)(4; 297)(5; 170)(1;681)(2;860)(3; 660)(4; 435)Since d(u; v) = 3, we have to construct the paths recursively, from pathsbetween vertices at distance 1. So, we determine:u0 = (2; 814)(3; 182)(4; 297)(5;170)(1; 681)v0 = (3; 182)(4; 297)(5; 170)(1; 681)(2; 860)Now, d(u0; v0) = 1 and applying the base construction, we obtain 5 pathsfrom u0 to v0:� The arc (u0; v0):[(2; 814)(3; 182)(4; 297)(5; 170)(1;681)(2;860)]� Paths from others between (1; 681) and (3; 182):[(1; 681)(2; �s12 )(3; �s13 )(4; �s14 )(5; �s15 )(1; �s21 )(2; �s22 )(3; 182)]giving rise to:[u0(2; �s12 )(3; �s13 )(4; �s14 )(5; �s15 )(1; �s21 )(2; �s22 )v0]From these paths from u0 to v0, by recursion we obtain the following onesfrom u to v:� If ((1; 681); (2; 860)),((2; 814); (3; 182)) are in the same path, we discard it.� If ((1; 681); (2; 860)),((2; 814); (3;182)) are in di�erent paths, we discardboth, and add the path obtaining by replacing the arc ((1; 681); (2; 860))by a cycle of length p, in the path that contain it.[u(2; �t2)(3; �t3)(4; �t4)(5; �t5)(1; �t1)(2; 860)(3; �s13 )(4; �s14 )(5; �s15 )(1; �s21 )(2; �s22 )v]Now, there are d paths from u to v, and it only remains to select the oneof minimum (or minimal) length without faulty elements.27



4 Fault-diameter of iterated line digraphs4.1 IntroductionThe fault-diameters digraphs were considered in [5, 9]. For the case of generaliterated line digraphs there are particular studies. The best known result wasproved in [53]. It says that, if an iterated line digraph LkG has maximumconnectivity, its fault-diameter is bounded by D(LkG) + C, where C dependson some properties of the digraph G, but does not depend on the number ofiterations k.Here we introduce two parameters in order to �nd new bounds on thefault-diameters of iterated line digraphs. The bounds presented here, are notonly in general tighter than the ones given in [53]. They also improve someother aspects. First of all, they do not need LkG to be maximally connectedto be applied. Besides, instead of dealing only with the worst case, that is,when the number of faulty elements is just one unit less than the connectivity,our bounds depend on the number of faulty elements. Finally, the boundsgiven in [53] can take di�erent values when they are calculated for H1 = LkGor for H2 = Lk0(Lk�k0G), being these two digraphs isomorphic. The boundshere avoid this problem. Also for some digraphs, their values are shown to beoptimal.4.2 PreliminariesLet x and y be two di�erent vertices of a digraph G. If the shortest path fromx to y is unique, it will be denoted by x ! y. Its �rst vertex after x will bev(x! f) and its last one before y will be v(y  x). Now, if F is a set of verticesof G and x =2 F , v(x ! F ) is the set formed by v(x ! f) for every vertex off 2 F , such that the shortest path from x to f is unique, and v(x  F ) isde�ned analogously. When x is a vertex and e = (u; v) is an arc such that theshortest path from x to u is unique, we denote by a(x ! e) its �rst arc. Ifx = u, a(x! e) = e. Also a(x e) is the last arc of the unique shortest pathfrom v to x. If x = v, a(x  e) = e. If F is a set of arcs of G, we de�ne asbefore the sets a(x! F ) and a(x F ).In [23] Fiol and F�abrega introduced the following parameter: for a di-graph G with minimum degree d and diameter D, ` = `(G) is the greatestinteger, 1 � ` � D, such that, for any x; y 2 V (G),a) if d(x; y) < `, the shortest x! y path is unique and there are no paths oflength d(x; y) + 1;b) if d(x; y) = `, there is only one shortest x! y path.In [23] it was also proved that if � and � denote respectively the vertexand arc-connectivity of G, then they are maximum where the diameter D isD � 2l � 1 and D � 2l, respectively. 28



The parameter ` was used in [53] to study the fault-diameters of maxi-mally connected loopless digraphs. For the same purpose but for digraphs withloops, they introduced a variation of this parameter, `�1 as following: for a di-graph G with diameter D, `�1 = `�1(G) is the greatest integer, 1 � `�1 � D,such that, for any x; y 2 V (G),there exist two unique vertices x+ 2 �+(x),y� 2��(y), not necessarily di�erent, such thata) if d(x; y) < `�1, the shortest x! y path is unique and if there exists a pathof length d(x; y)+1, it is unique and its �rst and last arcs are, respectively,(x; x+) and (y�; y);b) if d(x; y) = `�1, there is only one shortest x! y path.Making use of the above parameters, in [53] the following two results forfault-diameters were presented.Let G be a digraph with minimum degree d � 2, diameter D = D(G)and ` = `(G). Then,� Ds(LkG) � D(LkG) +C, if k � D � 2`+ 1� D0s(LkG) � D(LkG) +C, if k � D � 2`for s = 1; : : : ; d� 1, where C = maxfD + 1; 2(D � `)g.If G is a loopless digraph with minimumdegree d � 2 diameterD = D(G)and `�1 = `�1(G). Then,� Ds(LkG) � D(LkG) +C, if k � D � 2L1;1 + 1� D0s(LkG) � D(LkG) +C, if k � D � 2L1;1for s = 1; : : : ; d� 1, where C = maxfD + 1; 2(D � `�1)g.4.3 Parameters L�;r y M�;rThis section is devoted to the introduction of some new parameters and theirmain properties, together with some notation for the following. We begin in-troducing the parameter L�;r , which will allow us to stablish bounds accordingto the number of faulty elements. While doing it, we present the notation�+�;r ;���;r that will be helpful in the next.Let G be a digraph with minimumdegree d � 2 and diameter D = D(G).Let � be an integer, 0 � � � d � 2. For any positive integer r we de�neL�;r = L�;r(G) as the greatest integer, 0 � L�;r � D, such that for each vertex xthere exist sets �+�;r(x) � �+(x),���;r(x) � ��(x), with j�+�;r(x)j; j���;r(x)j � �,satisfying:1. if d(x; y) < L�;r , there is only one shortest path from x to y and any otherpath with length lesser than or equal to d(x; y) + r has its �rst vertex in�+�;r(x) and its last one in ���;r(y).2. if d(x; y) = L�;r , the shortest path from x to y is unique.29



This parameter is a generalization of the parameters `0 [23] and `�1 [53].In fact, L0;1(G) = `0(G) and L1;1(G) = `�1(G).Proposition 4.1 Let G be a digraph with minimum degree d � 2. Let � be aninteger with 0 � � � d�2 and r a positive integer such that L�;r = L�;r(G) � 1.Then, for any positive integer k, L�;r(LkG) = L�;r(G) + k.Proof : As Lk(G) = LLk�1G, it is enough to consider the case k = 1. Letx = x0x1 and y = y0y1 be two di�erent vertices of LG. If dLG(x;y) � L�;r(G)+1, then dG(x1; y0) � L�;r(G) and there is in G only one shortest path fromx1 to y0. Therefore, in LG, the shortest path from x to y is unique. Letus consider �+�;r(x1) = fw1; : : : ; wsg and ���;r(y0) = fu1; : : : ; utg, where 1 �s; t � �. If dLG(x;y) < L�;r(G) + 1, then dG(x1; y0) < L�;r(G) and anynon-shortest path from x1 to y0 with length at most d(x1; y0) + r has its �rstvertex in �+�;r(x1) and its last one in ���;r(y0). Therefore, all non-shortestpaths from x to y with length at most d(x;y) + r have their �rst vertices in�+�;r(x) = fx1w1; : : : ; x1wsg and their last ones in ���;r(y) = fu1y0; : : : ; uty0g.If x = y = x0x1, and there is a cycle xx1 : : :xh�1x with length h � r, then,there is a cycle C = x0x1x2 : : : xh�1x0 in the digraph G. Since L�;r(G) � 1,we have that x2 2 �+�;r(x1) and xh�1 2 ���;r(x0). Then, x1 = x1x2, whichis the �rst vertex after x in the cycle C, is in �+�;r(x), and the last vertexof the cycle is xh�1 = xh�1x0 2 ���;r(x). Therefore, we have proved thatL�;r(LG) � L�;r(G) + 1.On the other hand, since d � 2, for any two vertices x1; y0 of G thereexist vertices x0; y1 of G such that x = x0x1 and y = y0y1 are vertices of LGwith d(x;y) = d(x1; y0) + 1. Then, it is not di�cult to prove that L�;r(G) �L�;r(LG) � 1.2Lemma 4.2 Let G be a digraph with minimum degree d � 2, and L�;r =L�;r(G) for an integer � with 0 � � � d � 2 and a positive integer r. Ifx; y are two vertices of G, then(a) if d(x; y) < L�;r : for all x1 2 �+(x)�+�;r(x) such that x1 6= v(x ! y),d(x1; y) � d(x; y)+r; for all y1 2 ��(y)����;r (y) such that y1 6= v(y  x),d(x; y1) � d(x; y) + r;(b) if d(x; y) = L�;r : for all x1 2 �+(x)fv(x ! y)g, d(x1; y) � L�;r ; for ally1 2 ��(y) � fv(y  x)g, d(x; y1) � L�;r .Proof : If d(x; y) < L�;r , x1 =2 �+�;r(x) and x1 6= v(x ! y), then, the length ofany path xx1! y is greater than d(x; y) + r. Therefore, d(x1; y) � d(x; y) + r.In the same way, d(x; y1) � d(x; y) + r.If d(x; y) = L�;r the shortest path from x to y is unique. A shortest pathfrom x1 6= v(x ! y) to y determines a path from x to y. Then, d(x1; y) + 1 �d(x; y) + 1 = L�;r + 1. Analogously, d(x; y1) � L�;r . 2Iterating the application of the Lemma 4.2 we obtain the following:30



Lemma 4.3 Let G be a digraph with minimum degree d � 2, and L�;r =L�;r(G) for an integer � with 0 � � � d � 2 and a positive integer r. LetF be a set of vertices of G, 1 � jF j � d � � � 1, and x; y two vertices of G,x; y =2 F . Then, for every m � 1:(a) there exists a path xx1 : : : xm such that for all f 2 F :d(xi; f) � minfd(x; f) + rm;L�;rg;(b) there exists a path ym : : : y1y such that for all f 2 F :d(f; yi) � minfd(f; y) + rm;L�;rg. 2Let G be a digraph with minimumdegree d � 2. Let � be an integer with0 � � � d � 2 and r a positive integer such that L�;r(G) � 1. A (�; r)-doubledetour is a set of four paths fC1; C 01; C2; C 02g such that� C1 and C 01 are paths from x to f , with lengths s and s0, respectively, wheres0 � s and s0 � 1. C2 and C 02 are paths from f to y, with lengths t and t0,respectively, where t0 � s and t0 � 1. Besides, maxfs; tg � 1.� If (x; x01) is the �rst arc of C 01, then x01 =2 �+�;r(x). If s 6= 0 and (x; x1) isthe �rst arc of C1, then x01 6= x1.� If (y01; y) is the last arc of C 02, then y01 =2 ���;r(y) . If t 6= 0 and (y1; y) isthe last arc of C2, then x01 6= x1.The length of a (�; r)-double detour is de�ned to be s0 + t0. We de�ne M�;r =M�;r(G) as the minimum length of a (�; r)-double detour of G.It is not di�cult to check that, for any digraph G, M1;1(G) � 4 andM0;1 � 4 if G is loopless.Proposition 4.4 Let G be a digraph with minimum degree d � 2. Let � be aninteger with 0 � � � d�2 and r a positive integer such that L�;r(G) � 1. Then,for any positive integer k, M�;r(LkG) = M�;r(G) + k.Proof : As before, it is enough to prove the proposition for k = 1. LetfC1; C 01; C2; C 02g be a (�; r)-double detour in LG with length s0 + t0, whereC1 and C 01 are paths from x = x0x1 to f = f0f1 and C2 and C 02 are paths fromf = f0f1 to y = y0y1. If s; t � 1, it is not di�cult to prove that there exist a(�; r)-double detour in G with length s0 + t0� 1. This double detour consists intwo paths from x1 to f0 and two paths from f0 to y0.Now, we assume that s = 0 and t � 1, that is, x = f = f0f1. In thiscase, we can �nd a (�; r)-double detour fC1; C01; C2; C02g in the digraph G, whereC1 and C01 are paths from f1 to f1 with lengths s = 0 and s0, respectively, andC2 and C02 are paths from f1 to y0 with lengths t � 1 and t0 � 1, respectively.Therefore, if there is a (�; r)-double detour in LG with length s0 + t0,then there exists a (�; r)-double detour in G with length s0 + t0 � 1. On theother hand, for any (�; r)-double detour in G with length h, it is easy to �nd a(�; r)-double detour in LG with length h+ 1.231



Lemma 4.5 Let G be a digraph with minimum degree d � 2. Let � and r betwo integers with 0 � � � d� 2, and M�;r = M�;r(G). Let x; y; f be any threevertices. If x1 2 �+(x)��+�;r(x),x1 6= v(x! f) and y1 2 ��(y)����;r (y),y1 6=v(y  f), then d(x1; f) + d(f; y1) �M�;r � 2.Proof : Since x1 =2 �+�;r(x),x1 6= v(x ! f) and y1 =2 ���;r(y),y1 6= v(y  f), wecan consider a (�; r)-double detour in G with C1 the shortest path from x tof , C2 the shortest path from f to y, C 01 = xx1 ! f and C 02 = f ! y1y. Then,M�;r(G) � d(x1; f) + d(f; y1) + 2, and d(x1; f) + d(f; y1) �M�;r � 2. 2The following result can be proved analogously.Lemma 4.6 Let G be a digraph with minimum degree d � 2. Let � and rbe two integers with 0 � � � d � 2, and M�;r = M�;r(G). Let x; y be twovertices and (f; g) an arc. If x1 2 �+(x) � �+�;r(x),x1 6= v(x ! f) and y1 2��(y) ����;r(y),y1 6= v(y  g), then d(x1; f) + d(g; y1) �M�;r � 3. 24.4 New boundsIn this section we present upper bounds for both, vertex and arc-fault-diametersof iterated line digraphs, making use of the results of Section 4.3.Theorem 4.7 Let G be a digraph with minimum degree d � 2, diameter D =D(G), and parameters M�;r = M�;r(G), L�;r = L�;r(G) for an integer �,0 � � � d � 2 and a positive integer r. If D � 2L�;r � 1, the (s � 1)-vertex-fault-diameter of G is Ds(G) � D(G) + Cfor s = 1; : : : ; d� � with C = maxflD�M�;r+3+2rr m ; l2(D�L�;r)r mg.Proof : Let F be a non-empty set of faulty vertices of G, jF j = s � d���1. Letx; y be two di�erent vertices of G which are not in F . As jF j � d� �� 1, thereexist x1 in �+(x)��+�;r(x)� v(x! F ) and y1 in ��(y) ����;r(y)� v(y  F ).From Lemma 4.5, d(x1; f) + d(f; y1) � M�;r � 2, for all f 2 F . By Lemma4.2: d(x1; f) � d(x; f) + r or d(x1; f) � L�;r(LkG) and d(f; y1) � d(f; y) + r ord(f; y1) � L�;r(G), for all f 2 F . Also, as D � 2L�;r�1: 2L�;r(G) � D+1. ByLemma 4.3, there exist paths x1x2 : : : xm and yn : : : y2y1 with xi; yi =2 F , suchthat d(xm; f) � minfd(x1; f) + r(m � 1); L�;rg and d(f; yn) � minfd(f; y1) +r(n � 1); L�;rg, for all f 2 F . Now, if (m + n)r � D � M�;r + 3 + 2r andmr; nr � D � L�;r in any case we have d(xm; f) + d(f; yn) � D + 1 = D + 1.Then, a shortest path from xm to yn (with length at most D + k) does notcontain any vertex of F . Therefore, we have found a path from x to y withlength at most D+m+ n avoiding F . Considering m and n such that m+ n =maxflD�M�;r+3+2rr m ; l2(D�L�;r)r mg we obtain the desired bound.2For iterated line digraphs, using Proposition 4.4 and 4.1, we can state thefollowing: 32



Corollary 4.8 Let G be a digraph with minimum degree d � 2, diameter D =D(G), and parameters M�;r = M�;r(G), L�;r = L�;r(G) for an integer �, 0 �� � d�2 and a positive integer r. For any integer k, such that k � D�2L�;r+1,the (s � 1)-vertex-fault-diameter of LkG isDs(LkG) � D(LkG) + Cfor s = 1; : : : ; d� � with C = maxflD�M�;r+3+2rr m ; l2(D�L�;r)r mg. 2Making use of Lemma 4.6 instead of 4.5, we obtain:Theorem 4.9 Let G be a digraph with minimum degree d � 2, diameter D =D(G), and parameters M�;r = M�;r(G), L�;r = L�;r(G) for an integer �,0 � � � d � 2 and a positive integer r. If D � 2L�;r , the (s � 1)-arc-fault-diameter of G is D0s(G) � D(G) + Cfor s = 1; : : : ; d� � with C = maxflD�M�;r+3+2rr m ; l2(D�L�;r)r mg.2Corollary 4.10 Let G be a digraph with minimum degree d � 2, diameterD = D(G), and parameters M�;r = M�;r(G), L�;r = L�;r(G) for an integer�, 0 � � � d � 2 and a positive integer r. For any integer k, such that k �D � 2L�;r, the (s � 1)-arc-fault-diameter of LkG isD0s(LkG) � D(LkG) + Cfor s = 1; : : : ; d� � with C = maxflD�M�;r+3+2rr m ; l2(D�L�;r)r mg.2Theorems 4.1 and 4.2 in [53] are a consequence of the following corollary,which is proved by taking � = 1 and r = 1 in the previous theoremsCorollary 4.11 Let G be a digraph with minimum degree d > 2, diameterD = D(G) and `�1 = L1;1 = L1;1(G). Then,� Ds(LkG) � D(LkG) +C, if k � D � 2L1;1 + 1� D0s(LkG) � D(LkG) +C, if k � D � 2L1;1for s = 1; : : : ; d� 1, where C = maxfD �M1;1 + 5; 2(D � L1;1)g. 2If we take � = 0 and r = 1, we obtain the following result, from whichTheorems 3.1 and 3.2 in [53] follow.Corollary 4.12 Let G be a digraph without loops and with minimum degreed � 2, diameter D = D(G) and `0 = L0;1 = L0;1(G). Then,� Ds(LkG) � D(LkG) +C, if k � D � 2L0;1 + 1� D0s(LkG) � D(LkG) +C, if k � D � 2L0;1for s = 1; : : : ; d where C = maxfD �M0;1 + 5; 2(D � L0;1)g.233



4.5 ApplicationsSince BGC(p; d; dp+k + dk) = Lk(Cp 
K�d ), we can apply the bounds obtainedto this family.First, let us see the values obtained from the bounds in [53]. There itwas proved that for a digraph G with minimum degree d � 2, diameter D and` = `(G),� Ds(LkG) � D(LkG) +C, if k � D � 2`+ 1;� D0s(LkG) � D(LkG) +C, if k � D � 2`.where C = maxfD + 1; 2(D � `)g for any s = 2; : : : ; d.The digraph Cp 
 K�d , has diameter D = p [40] and parameter ` = 1 ifp > 1 (it is easy to obtain from [40]). With these values, the bound arising fromthe results in [53] is: C = maxf2p; 2(p� 1)g = 2p:The results in Section 4.4 state that if G is a digraph with minimumdegree d � 2, diameter D, and M�;r = M�;r(G), L�;r = L�;r(G) for an integer�, 0 � � � d� 2 and a positive integer r.� Ds(LkG) � D(LkG) +C, if k � D � 2L�;r + 1;� D0s(LkG) � D(LkG) +C, if k � D � 2L�;r.where C = maxflD�M�;r+3+2rr m ; l2(D�L�;r)r mg for s = 1; : : : ; d� �.The values of the parameters M�;r and L�;r are simple to calculate forCp 
 K�d when � = 0 and r = p � 1. In fact, from some properties presentedin [40] and in Section 3.3.1, it can be easily stated the following proposition.Proposition 4.13 For any positive integer p and any integer d � 2,M0;p�1(Cp 
K�d ) = 4 and L0;p�1(Cp 
K�d ) = 1. 2With these values,C = maxf�p � 4 + 3+ 2(p� 1)p� 1 � ;�2(p� 1)p� 1 �g = 3for s = 2; : : : ; d.These bounds hold for example, for the directed butter
y Bd(p) =BGC(2; d; dp), where no results were known.In Section 3.3.1 it was proved the existence of a container of width dand maximum length D + 2 between any two vertices of the generalized cyclesBGC(p; d; dk+1). So, the general bounds obtained exceed in one unit the exactvalue for the family of digraphs BGC(p; d; dk+1).34



Also KGC(p; d; dp+k+ dk) = LkKGC(p; d; dp+ 1) and we can apply thebounds obtained to this family.Let us see previously, the values obtained from the bounds in [53].The digraph KGC(p; d; dp + 1), has diameter D = 2p � 1 [40] and pa-rameter ` = p if p > 1 (it is easy to obtain from [40]). With these values, thebound arising from the results in [53] is:C = maxf2p; 2(2p� 1� p)g = 2pfor any s = 2; : : : ; d.Instead, by the results in Section 4.4,C = maxf�D �M�;r + 3 + 2rr � ;�2(D � L�;r)r �gfor s = 2; : : : ; d� �.The values of the parameters M�;r and L�;r are simple to calculate forKGC(p; d; dp + 1) when � = 0 and r = p � 1. In fact, from some propertiespresented in [40] and in Section 3.3.2, it can be easily stated the followingproposition.Proposition 4.14 For any positive integer p and any integer d � 2,M0;p�1(KGC(p; d; dp+ 1)) = 2p+ 2 and L0;p�1(KGC(p; d; dp+ 1)) = p. 2With these values,C = maxf�2p� 1� 2p� 2 + 3 + 2(p� 1)p� 1 � ;�2(2p� 1� p)p� 1 �g = 2for s = 2; : : : ; d.These bounds coincide with the exact values given in [54] for the fault-diameters of the bipartite digraphs BD(d; n), where it was proved the existenceof a container of width d and maximum length D+2 between any two vertices.We recall that KGC(2; d; dp+k+ dk) = BD(2; dp+k + dk).Also in Section 3.3.2 it was proved the existence of a container of width dand maximum length D + 2 between any two vertices of the generalized cyclesKGC(p; d; dp+k + dk).As a conclusion, the general bounds obtained are optimal for the familiesof digraphs BD(d; n) and more generally, the KGC(p; d; dp+k + dk).5 Connectivity and fault-tolerance of hyperdi-graphs5.1 IntroductionSome results about the fault-tolerance of bus interconnection networks modeledby directed hypergraphs are presented in this section. In particular, we studythe connectivities and fault-diameters of hyperdigraphs.35



The main results we present in this section are related to the fault-tolerance of iterated line hyperdigraphs. We prove that, for any hyperdigraphH,the iterated line digraph LkH is maximally connected if the number of iterationsk is large enough. That generalizes the results in [23] about the connectivity ofiterated line digraphs.The results in [53] and in Section 4 about the fault-diameters of iteratedline digraphs are also generalized here for hyperdigraphs. We prove that, ifthe number of iterations is large enough, the diameter of an iterated line hy-perdigraph LkH increases in at most a constant value when some vertices orhyperarcs are deleted. This constant value depends only on the properties ofthe hyperdigraph H and does not depend on the number of iterations k.Some results about the connectivity and the fault-diameter of Kautz andde Bruijn hyperdigraphs are derived.5.2 Basic results on connectivityWe say that a hyperdigraph H is simple if its underlying digraph bH has noparallel arcs. That is, a hyperdigraph H is simple if and only if there does notexist any pair of hyperarcs E1, E2 of H with E�1 \E�2 6= ; and E+1 \E+2 6= ;.Proposition 5.1 Let H be a hyperdigraph. Then, its line digraph LH is asimple hyperdigraph.Proof : Let E, F be hyperarcs of LH such that E� \ F� 6= ;. Suppose thatE = (E1v1F1) and F = (E2v2F2). If E� \ F� 6= ;, then E1 = E2 and v1 = v2.Then, E+ = f(v1F1wi) : wi 2 F+1 g and F+ = f(v1F2zi) : zi 2 F+2 g. If E 6= F ,it must be F1 6= F2 and then, E+ \ F+ = ;. 2Let H be a hyperdigraph with minimum degree d and minimum size s.We denote by bd = d( bH) the minimum degree of the underlying digraph bH. Let� and � be, respectively, the vertex and hyperarc-connectivities of H and let b�and b� be the vertex and arc-connectivities of the underlying digraph bH.It is clear that � = b� and, from the properties of the connectivities ofdigraphs, b� � b� � bd. On the other hand, it is obvious that � � d.If the hyperdigraph H is s-uniform, we have that bd � ds. If, besides, His simple, bd = ds. Then, in the uniform case, � = b� � b� � bd � ds. Anotherrelation between the connectivities of a hyperdigraph is given in next propositionfor the uniform case.Proposition 5.2 Let H = (V(H); E(H)) be an s-uniform hyperdigraph withvertex and hyperarc connectivities � and �, respectively. Then, � � �s.Proof : Let F = fE1; : : : ; E�g � E(H) be a cut-set of H. It is not di�cult to seethat at least one of the sets of vertices F� = E�1 [� � �[E�� or F+ = E+1 [� � �[E+�is a cut-set of H. Observe that jF�j; jF+j � �s.2We say that a hyperdigraph H is maximally connected if � = bd and� = d. Observe that, if H is simple and s-uniform and has vertex-connectivity36



� = ds, then, from Proposition 5.2, � = d. Therefore, a simple and s-uniformhyperdigraph H is maximally connected if and only if � = ds.5.3 Fault-tolerance under deletion of verticesThe vertex-connectivity and of a hyperdigraph H coincides with the vertex-connectivity of its underlying digraph bH, that is, � = �(H) = b� = �( bH). Thesame occurs with the (w � 1)-vertex-fault-diameter: Dw(H) = Dw( bH) for anyw = 1; : : : ; bd, where bd is the minimum degree of bH. Therefore, the numerousknown results about this parameter for digraphs, some of them presented inthe previous sections of this work, can be applied for hyperdigraphs just byconsidering the underlying digraph.Next results are obtained by considering the results about vertex-connectivity of digraphs given in [23].Proposition 5.3 Let H be a simple hyperdigraph with diameter D and vertex-connectivity �. Let bd be the minimum degree of the underlying digraph bH andconsider `� = `�( bH), where 0 � � � bd� 2. Then, � � bd� � if D � 2`� � 1.Some interesting corollaries about the vertex-connectivity of iterated linehyperdigraphs are deduced from this proposition. The following one is provedby taking into account that dLkH = Lk bH and `�(Lk bH) = `�( bH) + k wheneverH is a simple digraph, bH is not a cycle and `�( bH) � 1.Corollary 5.4 Let H be a simple hyperdigraph with diameter D. Let bd be theminimum degree of the underlying digraph bH and consider `� = `�( bH), where0 � � � bd� 2 and `�( bH) � 1. Then, �(LkH) � bd� � if k � D � 2`� + 1.The particular case � = 0 is specially interesting.Corollary 5.5 Let H be a simple hyperdigraph with diameter D such that itsunderlying digraph bH is loopless. Let us consider `0 = `0( bH) � 1. Then,�(LkH) = bd if k � D � 2`0 + 1.Since the line hyperdigraph LH is simple for any hyperdigraph H, we cansee from the last corollary that, for any hyperdigraph H such that bH is loopless,the vertex-connectivity of LkH is maximum if the number of iterations k is largeenough. If, besides, H is s-uniform, we have seen that H is maximally connectedif and only if � = ds. Therefore, in that case, the iterated line hyperdigraphLkH is maximally connected if k is large enough.In a similar way, we can apply Theorem 4.7 and Corollary 4.8 in order to�nd bounds on the vertex-fault-diameter of hyperdigraphs. In particular, fromCorollary 4.8, we can see that, if k is large enough, the (w � 1)-vertex-fault-diameter of an iterated line hyperdigraph LkH is Dw(LkH) � D(LkH) + C,where C is a constant that depends only on w and the properties of bH, but doesnot depend on the number of iterations k.37



5.4 Hyperarc-connectivityBounds on the hyperarc-connectivity � of an s-uniform hyperdigraph H can bederived from bounds on its vertex connectivity � because, in the uniform case,� � �s. In particular, we have seen that � = d if � = bd = ds.The aim of this section is to present some bounds for the hyperarc-connectivity of a hyperdigraph H, even if H is not s-uniform. Su�cient condi-tions for a hyperdigraph to have maximumhyperarc-connectivity, that is � = d,are derived.Let us recall that the bipartite representation of a hyperdigraph H isa bipartite digraph R = R(H) = (V (R); A(R)) with set of vertices V (R) =V0(R) [ V1(R), where V0(R) = V(H) and V1(R) = E(H), and set of arcsA(R) = f(u;E) ju 2 V0; E 2 V1; u 2 E�g [ f(F; v) j v 2 V0; F 2 V1; v 2 F+g:Observe that, if u; v are two vertices of H, a path of length h from u to v inH correspond to a path of length 2h in R(H) and, then, dR(u; v) = 2dH(u; v).Observe also that the bipartite repreentation of the line hyperdigraph LH isR(LH) = L2R(H).The hyperarc-connectivity � = �(H) of a hyperdigraph H can be ex-pressed in terms of the bipartite representation of H. In e�ect, � is the min-imum cardinality of all the subsets F � V1 such that there exist two verticesu; v 2 V0 such that there is no path from u to v in R� F .We de�ne next a parameter, similar to the parameter `� , that will beuseful to �nd bounds on the hyperarc-connectivity. This parameter is de�nedfor bipartite digraphs and will be applied to the bipartite representation ofthe hypergraph. Let R = (V0(R) [ V1(R); A(R)) be a bipartite digraph. Letus consider d+0 (R) = minv2V0 d+(v), the minimum out-degree of the verticesin V0, and d�0 (R), the minimum in-degree of the vertices in V0. Let us taked0 = d0(R) = minfd+0 ; d�0 g. Let � be an integer such that 0 � � � d0 � 2. Wede�ne h� = h�(R) as the maximum integer, with 1 � h� � D, such that forany pair of vertices u; v, where u 2 Vi and y 2 Vj with i 6= j,� if d(x; y) < h� , there is only one shortest path from x to y and there areat most � paths from x to y with length d(x; y) + 2;� if d(x; y) = h� , there is only one shortest path from x to y.Let R = (V0(R)[V1(R); A(R)) be a bipartite digraph. Then, the iteratedline digraph L2R is a bipartite digraph and, in a natural way, we can put,for i = 0; 1, Vi(L2R) = fx0x1x2 2 V (L2R) jx0 2 Vi(R)g. In this situation,d0(L2R) = d0(R) and we can consider h�(R) and h�(L2R) for the same valuesof �.Proposition 5.6 Let R = (V0(R)[V1(R); A(R)) be a bipartite digraph di�erentfrom a cycle. Then, h�(L2R) = h�(R) + 2 for any � = 1; : : : ; d0 � 2. If thereare no cycles of length 2 in R, then h0(L2R) = h0(R) + 238



Proof : Let us consider x = x0x1x2 2 Vi(L2R) and y = y0y1y2 2 Vj(L2R),where i 6= j. If d(x;y) � 3 and d(x;y) � h�(R) + 2, then d(x2; y0) � h�(R).Therefore, the shortest path from x2 to y0 is unique and so is the shortest pathfrom x to y. If d(x;y) � 3 and d(x;y) < h�(R)+2, then d(x2; y0) < h�(R) andthere are at most � paths from x to y with length d(x;y) + 2. If d(x;y) = 1,then the vertices x1x2 and y0y1 of LR are equal. Since in LR there is at mostone cycle of length 2 on the vertex x1x2, in L2R there is at most one path withlength 3 = d(x;y) + 2 from x to y. If R has no cycles of length 2, there is notany path of length 3 from x to y. Therefore, h�(L2R) � h�(R) + 2 if � � 1 or� = 0 and R has no cycles of length 2. Since R is not a cycle, it is not di�cultto see that h�(L2R) � h�(R) + 2.2Proposition 5.7 Let R = (V0[V1; A) be a bipartite digraph and let us considerh� = h�(R), where 0 � � � d0 � 2. Let us consider a vertex x 2 V0, a subsetF � V1, with jFj � d0 � � � 1, and a vertex y 2 F . Then,� There exists a vertex x1 2 V0 and a path xy1x1 such that y1 =2 F andd(x1; y) � minfd(x; y) + 2; h�g and d(x1; y0) � minfd(x; y0); h�g for anyy0 2 F .� There exists a vertex x�1 2 V0 and a path x�1y�1x such that y�1 =2 Fand d(y; x�1) � minfd(y; x) + 2; h�g and d(y0; x�1) � minfd(y0; x); h�gfor any y0 2 F .Proof : We are going to prove the �rst statement. The second one is provedanalogously. Since jv(x! F)j � d0 � � � 1, there exists a vertex y1 2 �+(x)�v(x! F) such that the �rst vertex of any path from x to y with length d(x; y)+2is di�erent from y1. Let x1 be any vertex in �+(y1). It is not di�cult to provethat this vertex satis�es the required conditions.2Theorem 5.8 Let H be a hyperdigraph with minimum degree d, diameter Dand hyperarc-connectivity �. Let R = R(H) be its bipartite representation andconsider h� = h�(R). Then, � � d� � if D � h� � 1.Proof : We are going to prove that, if D � h� � 1, for any set of vertices of thebipartite representation F � V1 = E(H), with jFj � d��� 1, and for any pairof vertices u; v 2 V0, there exists a path from u to v in R�F . E�ectively, fromProposition 5.7, we can �nd in R a path uE1u1E2u2 : : :Emum such that Ei =2 Fand dR(um;F) � h� . Equally, we can �nd a path v�nE�n : : : v�2E�2v�1E�1vsuch that E�i =2 F and dR(v�n;F) � h�. Then, a shortest path from um tov�n, which has length at most 2D < 2h�, will avoid F .2The following corollary is a direct consequence of Theorem 5.8 and Propo-sition 5.6.Corollary 5.9 Let H be a hyperdigraph with minimum degree d, and diameterD. Let R = R(H) be its bipartite representation and consider h� = h�(R).Then, 39



� �(LkH) � d� � if k � D � h� + 1.� If R has no cycles of length 2, then �(LkH) = d if k � D � h0 + 1.5.5 Hyperarc-fault-diameterWe present in this section some results about the hyperarc-fault-diameter ,D0w(H), of a hyperdigraph H, which is de�ned as the maximum diameter ofthe hyperdigraphs obtained from H by removing at most w � 1 hyperarcs.In the same way as we did for the hyperarc-connectivity, we are going touse the bipartite representation R(H) to study that parameter. In particular,we present a bound on D0w(H) in terms of h0(R) and the parameter M0;1(R),which has been de�ned in Section 4.3. We are going to use the following lemma,which is proved in a similar way as Proposition 5.7.Lemma 5.10 Let R = (V0 [ V1; A) be a bipartite digraph without cycles oflength 2 and h0 = h0(R). Let us consider a vertex x 2 V0 and a subset F � V1,with jFj � d0 � 1. Then,� There exists a vertex x1 2 V0 and a path xy1x1 such that y1 =2 F andd(x1; y) � minfd(x; y) + 2; h�g for any y 2 F .� There exists a vertex x�1 2 V0 and a path x�1y�1x such that y�1 =2 Fand d(y; x�1) � minfd(y; x) + 2; h�g for any y 2 F .Theorem 5.11 Let H be a simple hyperdigraph with minimum degree d anddiameter D and let R = R(H) be its bipartite representation. Let us considerh = h0(R) and M = M0;1(R). Then, if D � h � 1, for any w = 1; : : : ; d� 1,the w-hyperarc-fault-diameter of H veri�es D0w+1(H) � D + C, whereC = max�D � �M � 12 � + 4; 2�D � �h2���Proof : Let F � E(H) = V1(R) be a set of faulty hyperarcs with jFj = w < d.We are going to prove that, for any pair of vertices x; y 2 V(H) = V0(R),there exists in H a path from x to y with length at most D + C avoidingthe hyperarcs in F . From Lemma 5.10, there exist paths xE1x1 and y�1E�1yin R such that E1; E�1 =2 F and dR(x1;F); dR(F ; y�1) � 3 (observe that h �D+1 � 2). Besides, from the de�nition of the parameterM0;1(R), we have thatdR(x1; F ) + dR(F; y�1) � M � 4 for any F 2 F . Applying again Lemma 5.10,for any m;n � 1 we can �nd paths xE1x1 : : :Emxm and y�nE�n : : : y�1E�1ysuch that, for any F 2 F ,dR(xm; F ) � minfdR(x1; F ) + 2(m � 1); hgand dR(F; y�n) � minfdR(F; y�1) + 2(n � 1); hg40



Then, if m;n � D � bh=2c and m + n = C, it is not di�cult to see thatdR(xm; F ) + dR(F; y�n) > 2D for any F 2 F . Therefore, any shortest path inR from xm to y�n, which has length at most 2D, will avoid F . Hence, we havefound a path from x to y in H with length at most D+m+n = D+C avoidingthe faulty hyperarcs in F .2As a consequence of Theorem 5.11, we obtain the following result aboutthe hyperarc-fault-diameter of iterated line hyperdigraphs.Corollary 5.12 Let H be a simple hyperdigraph with minimum degree d anddiameter D and let R = R(H) be its bipartite representation. Let us considerh = h0(R) and M = M0;1(R). Then, for any k � D � h + 1 and for anyw = 1; : : : ; d� 1, the w-hyperarc-fault-diameter of the iterated line hyperdigraphLkH veri�es D0w+1(LkH) � D(LkH) + C, whereC = max�D � �M � 12 � + 4; 2�D � �h2���Proof : Apply Theorem 5.11 by taking into account that R(LkH) = L2kR(H)and that h0(L2kR) = h0(R)+2k (Proposition 5.6) andM0;1(L2kR) = M0;1(R)+2k (Proposition 4.4).25.6 ApplicationsWe apply next the results in the above sections in order to study the fault-tolerance of the generalized de Bruijn and Kautz hyperdigraphs.The vertex-connectivity of these hyperdigraphs can be derived from theresults about the vertex-connectivity of the corresponding digraphs that aregiven in [42, 23]. It is proved in those papers that, if G is the generalizedde Bruijn digraph GB(d; n) or the generalized Kautz digraph GK(d; n) andD(G) � 3, then �(G) � d � 1. If G = GB(d; n), or G = GK(d; n) and d + 1does not divide n, then G has loops. In this case, �(G) = d � 1 if D(G) � 3.Besides, if G = GK(d; n) has diameter D � 5, then�(G) = � d if n is a multiple of d+ 1 and gcd(d; n) 6= 1;d� 1 otherwise.We can obtain from these results the vertex-connectivity of the generalized deBruijn and Kautz hyperdigraphs.Theorem 5.13 Let us consider positive integers d; n; s;m, with dn �m 0 andsm �n 0. Let H be the generalized de Bruijn hyperdigraph H = GB(d; n; s;m).Then, �(H) = ds� 1 if D(H) � 3.Proof : We only have to take into account that bH = GB(ds; n) [8].241



Theorem 5.14 Let us consider positive integers d; n; s;m, with dn �m 0 andsm �n 0. Let H be the generalized Kautz hyperdigraph H = GK(d; n; s;m).Then, �(H) � ds� 1 if D(H) � 3. Besides, if D(H) � 5,�(H) = � ds if n is a multiple of ds+ 1 and gcd(ds; n) 6= 1;ds� 1 otherwise.Proof : As before, bH = GK(ds; n) [8].2If dn = sm, the hyperdigraphs H1 = GB(d; n; s;m) and H2 =GK(d; n; s;m) are s-uniform. In this case, we can �nd the hyperarc-connectivityof those hyperdigraphs because �(Hi) � �(Hi)s. Therefore, if D(Hi) � 3, wehave that �(Hi)s � ds� 1 and, hence, �(Hi) = d if s � 2.The vertex-fault-diameter of the de Bruijn hyperdigraphs,HB(d; s;D) = GB(d; (ds)D; s; d2(ds)D�1)and Kautz hyperdigraphs,HK(d; s;D) = GK(d; (ds)D + (ds)D�1; s; d2((ds)D�1 + (ds)D�2))can be computed by taking into account that dHB(d; s;D) = B(ds;D) anddHK(d; s;D) = K(ds;D). Therefore, Dw(HB(d; s;D)) = D + 2 for any w =2; : : : ; ds� 1 and Dw(HK(d; s;D)) = D + 2 for any w = 2; : : : ; ds.6 Partial line hyperdigraphs6.1 IntroductionThe partial line hyperdigraph technique is a generalization of the line hyper-digraph technique [6], the partial line digraph [33], and consequently, the linedigraph [36].First, we show the usefulness of such technique for the (d;N; s)-hyperdigraph problem.We are going to show that the partial line hyperdigraph tends to increasethe connectivity. Clearly, the minimumdegree of the partial line hyperdigraph,is a natural lower bound.Also we extend the de�nition of the index of expandability to hyperdi-graphs. This allow to measure the capability of a bus network to increase itsnumber of processors.We present a characterization of line hyperdigraphs in terms of line di-graphs, proving a conjecture [6] for the characterization of line hyperdigraphs.Finally, we study the application of the partial line hyperdigraph tech-nique to the generalized Kautz hyperdigraphs. Also some results concerningwith digraphs are obtained. 42



6.2 The techniqueGiven a hyperdigraph H = (V(H); E(H)) with minimum in-degree at least 1 forany set V 0 of vertices of LH such that fv : 9(uEv) 2 V 0g = V(H), the partialline hyperdigraph of H will be the hyperdigraph LH = (V(LH); E(LH)),V(LH) = V 0E(LH) = f(EvF ) : v 2 F�; 9u 2 V(H) : (uEv) 2 V 0gwhere (EvF )+ = f(vFw) : (vFw) 2 V 0g [ f(v0F 0w) : w 2 F+; (vFw) =2 V 0g(EvF )� = f(uEv) : u 2 E�; (uEv) 2 V 0gThat is, (EvF )+ contain all the vertices in the form (vFw) of V 0, and onearbitrary vertex, (v0F 0w), if (vFw) is not in V 0.That is, the partial line hyperdigraphs depends on the election of theset of vertices V 0 and also in the way that the out-sets of the hyperarcs areconstructed.Note that always exists a set V 0 with fv : (uEv) 2 V 0g = V(H), becausethe minimum degree of H is at least 1.Particularly, observe that in the case jV 0j � ds, we can choose the verticesin jV 0j in such a way that E(LH) = E(LH). In this situation, the out-set of anyhiperarc EvF 2 E(LH) = E(LH) can be taken as (EvF )+ = f(vFw) : (vFw) 2V0g [ f(v0Fw) : w 2 F+; (vFw) =2 V 0g. That is, it is not necessary to considerhyperarcs F 0 6= F in order to determine the vertices in (EvF )+.Notice that if H is a digraph, LH coincides with a partial line digraph.Also, if V 0 = V(LH) then LH is LH. So, the partial line hyperdigraph tech-nique is a generalization of the line hyperdigraph technique [6], the partial linedigraph [33], and consequently, the line digraph [36].Next, we show some useful relations of this technique to digraphs.Proposition 6.1 Let H = (V(H); E(H)) with minimum d > 1, and V 0 a set ofvertices of LH such that fv : 9(uEv) 2 V 0g = V(H). For any vertex (uEv) andany hyperarc (EvF ) of the partial line hyperdigraph of H, LH,d+LH(uEv) = d+H(v);s+LH (EvF ) = s+H (F ): 2Proposition 6.2 Let H be a hyperdigraph with minimum in-degree d > 1.There exists a set of vertices of LH, and a set of arcs of bH, such that withthese sets dLH and L bH are isomorphic.Proof : Given a set V 0 of vertices of LH such that fv : (uEv) 2 V 0g = V(H). LetE0 be the set of arcs of bH de�ned by E0 = f(u; v) : 9E 2 E(H); (uEv) 2 V 0g.With these sets there is a trivial isomorphism between dLH and L bH. 243



6.3 The (d; s;N)-hyperdigraph problemIn [22] was presented a Moore like bound for the order of a hyperdigraph withdiameter D, maximum out-degree d and maximum out-size s:N � 1 + (d+s+) + (d+s+)2 + : : :+ (d+s+)D = (d+s+)D+1 � 1d+s+ � 1From this arises the following lower bound for the diameter:(logd+s+(N (d+s+ � 1) + 1))� 1 � D:We will show the good behaviour of the proposed technique for such problem.The order of the hyperdigraph LH is the cardinal of V 0, and it is chosenwith the condition fv : (uEv) 2 V 0g = V(H). Then,jV(H)j � jV(LH)j � jV(LH)j:The partial line hyperdigraph preserves the maximum out-degree of H.In fact, d+LH(uEv) = d+H(v) for any vertex (uEv) of LH. Also, the out-size of Hremains constant since for every hyperarc (EvF ) of LH, s+LH (EvF ) = s+H (F )(the in-size of H is preserved too). Then, if H is d-regular, LH is also d-regular.So, if the out-size of all hyperarcs of H is s,jV(H)j � jV(LH)j � jV(H)jdsSince D(H) = D( bH) for every hyperdigraph H, by Proposition 6.2 wehave D(LH) = D(dLH). Now, bH is a digraph and by [33]: D( bH) � D(L bH) �D( bH) + 1. So, D(H) � D(LH) � D(H) + 1 = D(LH).From all the above considerations about the order, maximum out-degreeand maximum out-size, we can state the following result:Theorem 6.3 Let H be a hyperdigraph with maximum out-degree d+ > 1, max-imum out-size s+, order N and diameter D. Then the order NL, the maximumout-degree d+L , the maximum out-size s+L and the diameter DL of any partialline hyperdigraph LH satisfy:N � NL � Nds; d+L = d+;D � DL � D + 1: s+L = s+:26.4 ConnectivityTo show that the partial line hyperdigraph tends to increase the connectivity(with the minimum degree of the partial line hyperdigraph as a lower bound),�rst, we extend a useful concept introduced in [33] for digraphs. A hyperdi-graph H has no redundant short paths when there is at most one path of lengthone or two between every pair of vertices (di�erent or not) of H. Notice that44



under this restriction we can still work with interesting hyperdigraphs. Forinstance, the generalized De Bruijn hyperdigraphs and the generalized Kautzhyperdigraphs [8] have no redundant short paths.Lemma 6.4 Let H be a hyperdigraph. Then, H has no redundant short pathsif and only if bH has no redundant short paths. 2Theorem 6.5 Let H be a hyperdigraph with minimum in-degree d > 1 andminimum in-size s. If H has no redundant short paths:minf�(H); d(LH)sg � �(LH)Proof : By Lemma 6.4, bH has no redundant short paths, so by the bound on theconnectivity of partial line digraphs [33], minf�( bH); d(L bH)g � �(L bH). Since�(H) = �( bH), then minf�(H); d(LH)sg � �(LH). 2For the hyperarc-connectivity the analogous bound holds, but to proveit, we need the following result of [6]:Lemma 6.6 Let H be a hyperdigraph with hyperarc-connectivity �. Then, everyvertex v in H is on � hyperarc-disjoint cycles.2Theorem 6.7 Let H be a hyperdigraph with minimum in-degree d > 1. Let V 0be a set of vertices of LH, jV 0j � ds, and LH a partial line hyperdigraph withE(LH) = E(LH). Then, �(LH) � �(H).Proof : It is enough to prove that a set of � = �(H) hyperarc-disjoint paths inH induces a set of � hyperarc-disjoint paths in LH. Let (uEv) and (xFy) betwo di�erent vertices of LH. In order to construct � hyperarc-disjoint pathsfrom (uEv) to (xFy) in LH from � hyperarc-disjoint paths from v to x in H,we consider two cases:1. If v 6= x, we have � hyperarc-disjoint paths from v to x in H:Pi = v;Ei1; vi1; Ei2; vi2; : : : ; Eini�1; vini�1; Eini; xwhere i = 1; : : : ;� �. Each path Pi gives rise to a path from (uEv) to(xFy), LPi in LH de�ned by:LPi = (uEv); (EvE0i1); (v0Ei1vi1); (Ei1vi1Ei2); (v0i1Ei2vi2); : : :: : : (v0iniEinix); (Einix0F ); (xFy)It is not di�cult to see that the paths LPi are equally hyperarc disjoint.2. If v = x, we proceed as in the above case but with hyperarc disjoint cyclesin H. By Lemma 6.6, if the hyperarc-connectivity is �, each vertex of His in � hyperarc-disjoint cycles. In the same way as we do with paths Pi,we can obtain � paths in LH from these cycles in H. Again, since theoriginal cycles are hyperarc-disjoint, these new paths are hyperarc-disjointalso. 2 45



6.5 ExpandabilityGiven two hyperdigraphsH andH 0, onN and N 0 vertices, respectively, N � N 0,we de�ne the index of expandability of H to H 0, e(H;H 0), as the minimumnumber of hyperarcs that has to be modi�ed or removed from H to obtain H 0by adding N 0 �N vertices and some appropriate hyperarcs, if it is necessary.That is, the index of expandability measures the necessary modi�cationsof hyperarcs of H, to obtain a sub-hyperdigraph H 0.Notice that this de�nition generalizes the corresponding one for digraphs.If H is a hyperdigraph, LnH will denote a partial line hyperdigraph of Hwith order n. Next we show that any hyperdigraph LnH has good expandabilityto some Ln+1H.Theorem 6.8 Let H = (V(H); E(H)) be a hyperdigraph with maximum in-degree d > 1. For any partial line hyperdigraph LnH on n vertices, jV(H)j �n � jV(LH)j � 1, there exists a digraph Ln+1H, such that the index of expand-ability of LnH to Ln+1H satis�es:e(LnH;Ln+1H) � dProof : Let V 0 be the set of vertices of LnH. The hyperdigraph Ln+1H can beobtained from LnH by the following algorithm:a) Choose a vertex (uEv) of LH which is not V 0. Since jV 0j � jV(LH)j � 10,always exist at least one.b) Add the vertex (uEv) to LH.c) For every hyperarc of LH denoted by (FuE), replace in their out-sets,the vertex (u0E0v) by the vertex (uEv).d) For every hyperarc F of H, if (EvF ) is not a hyperarc of LH, add it, with(EvF )+ = f(vFw) : (vFw) 2 V 0g [ f(v0F 0w) : w 2 F+; (vFw) =2 V 0g.(EvF )� = f(uEv) : u 2 E�; (uEv) 2 V 0g.For each F such that (EvF ) is a hyperarc of LH, put the vertex (uEv)in the corresponding in-set.We only add new hyperarcs or replace the existing ones in steps c) andd), so the index of expandability is given by the number of changes there. Sincethe maximum degree is d, this number is at most d. 2The above proof gives an algorithm to expand partial line hyperdigraphs.With a few changes it can be used to decrease the number of vertices.Also in some applications, it could also be useful to measure the numberof vertex-to-vertex connections that have to be modi�ed to add components.From the above algorithm: 46



Corollary 6.9 Let H = (V(H); E(H)) be a hyperdigraph with maximum in-degree d > 1 and maximum out-size s. For any partial line hyperdigraph LnHon n vertices, jV(H)j � n � jV(LH)j � 1, there exists a hyperdigraph Ln+1H,such that the connections that have to be modi�ed to transform LnH to Ln+1Hare at most ds. 26.6 ApplicationsAs we have said before, the main goal of the partial line hyperdigraph techniqueis to construct hyperdigraphs with minimumdiameter. An interesting family ofsuch hyperdigraphs is obtained when this technique is applied to the de Bruijnhyperdigraphs, HB(d; s;D) = GB(d; (ds)D; s; d2(ds)D�1)and Kautz hyperdigraphs,HK(d; s;D) = GK(d; (ds)D + (ds)D�1; s; d2((ds)D�1 + (ds)D�2))By doing that, we obtain a new family of hyperdigraphs with minimumdiameterthat have other interesting properties in relation to the fault-tolerance and therouting algorithms. For instance, as a direct consequence of next theorem, wehave that some of these hyperdigraphs are iterated line hyperdigraphs.Theorem 6.10 Let H be a hyperdigraph with minimum in-degree d > 1. Thereexists a set of vertices of LH, and a set of vertices of L2H, such that with thesesets LLH and LLH are isomorphic.Proof : The vertices of LLH are in correspondence with the hyperarcs of LH,so there are two kinds of vertices:1. (uEv)(EvF )(v0F 0w), with v 2 F�, w 2 F+ and (vFw) =2 V (LH)2. (uEv)(EvF )(vFw), with v 2 F�, w 2 F+ and (vFw) 2 V (LH)Clearly, for any choice of vertices of LH, there are di�erent digraphs LH andLLH. For a given digraph LLH, we construct a set of vertices of LH by therules: 1. If (uEv)(EvF )(v0F 0w) 2 V (LLH), we take (uEv)(EvF )(vFw)2. If (uEv)(EvF )(vFw) 2 V (LLH), we take (uEv)(EvF )(vFw)Now, applying the partial line technique to LH with this set of vertices,LLH and LLH are isomorphic. 2Corollary 6.11 Let H be a hyperdigraph with minimum in-degree d > 1. Thereexists a set of vertices of LH, and a set of vertices of Lk+1H, such that withthese sets, for any integer k � 1, LkLH and LLkH are isomorphic.47



Proof : By the above theorem, there exists a set of vertices of LH, and a set ofvertices of H, such that LLH and LLH. (The result for k = 1.) We are goingto prove by induction on k that the same holds for any k � 1. Let us assumethat LiLH and LLiH are isomorphic for any integer i, 1 � i � k � 1, and weare going to prove LkLH and LLkH are isomorphic:LLkH = LLk�1LH � Lk�1LLH � LlLH. 26.7 On a conjecture of Bermond and ErgincanIn [6], Bermond and Ergincan conjecture that an equivalent condition for adirected hypergraph to be a directed line hypergraph, is that its underlyingdigraph and the underlying digraph of its dual, must be both line digraphs. Weare going to prove it.Proposition 6.12 Let H be a hyperdigraph. If H is a line hyperdigraph then,its underlying digraph bH, and the underlying digraph of its dual, cH�, are both,line digraphs.Proof : Since (LH)� is isomorphic to LH� and bLH is isomomorphic to L bH [6],if H is a partial line hyperdigraph, then bH and bH� are partial line digraphstoo, so we conclude that if H is a line hyperdigraph, both digraphs are also linedigraphs. 2Proposition 6.13 Let H be a hyperdigraph. If its underlying digraph, bH, andthe underlying digraph of its dual, cH�, are both, partial line digraphs, then H isa partial line hyperdigraph.Proof : If bH is a line digraph, its vertices, which are the set of vertices of H,can be labeled with ordered pairs of vertices of other digraph, let us say H1,where bH = LH1. Moreover, we can assure that any two vertices uivi, ujvj areadjacent in bH if and only if vi = uj.Analogously, if cH� is a line digraph, the set of vertices of cH�, corre-sponding with the set of hyperarcs of H, can be labeled with ordered pairs ofvertices of other digraph, let us say H2, such that cH� = LH2. Besides, twovertices of cH�, EiFi and EjFj, are adjacent if and only if Fi = Ej . Then, bythe de�nition of cH�, there exists a vertex v of H belonging to the out-set ofthe hyperarc labeled EiFi, (EiFi)+, and to the in-set of the hyperarc with labelEjFj, (EjFj)�, if and only if Fi = Ej.Now, we modify the labeling for the vertices ofH introducing the labelingfor the hyperarcs. That is, if a vertex labeled with uivi is in (EjFj)�, we re-label it with uiEjvi, and if the vertex with label uivi is in (EjFj)+, we re-labelit with uiFjvi. This is consistent because if a vertex belongs to (EpFp)+ and to(EqFq)� it must be Eq = Fp, because cH� is a line digraph.Then, we have de�ned a labeling in H with the line hyperdigraph condi-tions, so H it is a line hyperdigraph. 2As a direct consequence of Propositions 6.12 and 6.13 we have proved:48



Theorem 6.14 Let H be a hyperdigraph. Then, H is a line hyperdigraph ifand only if its underlying digraph, bH, and the underlying digraph of its dual,cH�, are line digraphs. 2Corollary 6.15 Let H be a hyperdigraph and k a positive integer. Then, H isa k-iterated line hyperdigraph if and only if its underlying digraph, bH, and theunderlying digraph of its dual, cH�, are both, k-iterated line digraphs. 27 De Bruijn sequences of maximum periodlength7.1 IntroductionA feedback shift register of length k over Zn is a k-tuple of elements in Zntogether with a feedback function f : Zkn ! Zn. The tuple represent the stateof the register, and the function f , the element introduced in the correspondingshift from a given state [39]. The case of linear feedback function was carefullystudied by algebraic methods. On the contrary, for the non-linear case, only afew properties are known.To a given feedback shift register over Zn, it is possible to associatethe sequence of the feedback function for consecutive states of the register.Moreover, this is a one-to-one correspondence. These are called De Bruijnsequences.Because of their randomness property, are specially interesting the DeBruijn sequences with maximum period length. It was shown that they cannotbe obtained by linear feedback functions [58]. So, the feature is to �nd a way toobtain, or at least characterize, all the non-linear feedback functions generatingDe Bruijn sequences of maximum period length.The De Bruijn sequences of maximum period were �rst introduced overZ2 [17]. There it was proved that if ` is the length of the register, the number ofall the De Bruijn sequences of maximumperiod length that can be generated is22`�1. In [32] we deal with this problem from a theoretical graph point of view.Di�erent matrices can be associated to a digraph. For a given digraph G,the adjacency matrix, M , has one row and one column by each vertex. If thereis an arc from the vertex i to the vertex j in G, then (i; j) entry of the matrix is1, and otherwise is 0. If k is a positive integer, a value 1 in the (i; j) entry ofMkmeans the existence of a path from i to j of length k. In the incidence matrix,I, rows represent the vertices and columns the arcs of G. Then, its (i; e) entryis 1, if e is incident to i, �1 if e is incident from i, and 0 otherwise. If I hasn columns, m rows, and G has c connected components, then rank(I) = n � c[11]. 49



7.2 Analysis based on graphsIn the following two sections we are going to present some results based in theanalysis of the adjacency and incidence matrix of a digraph. For a De Bruijnsequence over Zn, with register length ` and feedback function f : Zǹ ! Zn,�rst we consider another function F : Zǹ ! Zǹ de�ned by:F (x0; x1; : : : ; xn�1) = (x1; : : : ; xn�1; f(x0; x1; : : : ; xn�1)):Now, we de�ne a digraph with vertex set Zǹ, and a vertex x adjacent toanother vertex y, if and only if, y = f(x). We denote such digraph by GF .With this construction, note that GF is a subdigraph of the De Bruijndigraph B(n; `). A De Bruijn sequence has maximum period length, if andonly if, the corresponding GF for its feedback function de�nes a hamiltoniancycle in the corresponding De Bruijn digraph. Also note that, since the DeBruijn digraphs are iterated line digraphs, is the same to �nd hamiltonian oreulerian cycles. (Every eulerian cycle induces a unique hamiltonian cycle in itsline digraph).Reciprocally, every hamiltonian cycle is in one-to-one correspondencewith some digraph Gf , which is a subdigraph of B(n; `).So, we are looking for all the hamiltonian cycles in a general De Bruijndigraph, let us say B(n; `).7.2.1 Application of the adjacency matrix of a digraphProposition 7.1 Let G0 be a subdigraph of a digraph G. If MG0 and MG arerespectively their adjacency matrices. Then, if the (i; j) entry of MG is 0, the(i; j) entry of MG0 is also 0. 2Proposition 7.2 Let G be a digraph on n vertices and M its adjacency matrix.For any positive integer i, 1 � i � n, there is a cycle of length ` containing thevertex i, if and only if, the (i; i) entry of the matrix M is 1. 2As a consequence of the above two propositions we obtain the followingone:Proposition 7.3 Let M be the adjacency matrix of a hamiltonian cycle in theDe Bruijn digraph B(n; `) with adjacency matrix MB :a) is a permutation matrix;b) the (i; j) entry of M can be 1 only if the (i; j) entry of MB is 1;c) for i = 1; : : : ; `n � 1, the diagonal of M i has only entries with value 0;d) in M `n the diagonal has only entries with value 1. 250



To calculate all the De Bruijn sequences of maximum period length it ispossible with the above conditions, but using large scale symbolic calculations.Perhaps are more interesting some properties that can be obtained from them.For the binary case, for example, condition a) implies that:Given a function F : Z2n ! Z2n, we denote by F 0 another function F 0 :Z2n ! Z2n de�ned by:F (x0; x1; : : : ; xn) = x1; : : : ; xn0, then F 0(x0; x1; : : : ; xn) = x1; : : : ; xn1;F (x0; x1; : : : ; xn) = x1; : : : ; xn1, then F 0(x0; x1; : : : ; xn) = x1; : : : ; xn0.Proposition 7.4 If F : Z2n ! Z2n de�nes a De Bruijn sequence of maximumperiod length, then F 0 : Z2n ! Z2n too. 2This means that it is su�cient to calculate a half of the desired function.7.2.2 Application of the incidence matrix of a digraphWe present some conditions on the function f to make the corresponding func-tion F , to determine a digraph GF to be a hamiltonian cycle in the correspond-ing De Bruijn digraph.Proposition 7.5 Let F : Zǹ ! Zǹ be a function and GF its associated digraph.Then, GF is a hamiltonian cycle in B(n; `) if and only if, the following threeconditions hold:a) F is bijective;b) If x = x0; x1; : : : ; x` and y = F (x), then y = x1; : : : ; x`; x`+1;c) GF is connected.2Clearly, the conditions a) and b) of the above proposition are easy tocheck. To verify c) we propose the following result:Proposition 7.6 Let F : Zǹ ! Zǹ be a function and GF its associated digraph,with incidence matrix IF . Then, GF is connected if and only if rank(IF ) =n` � 1. 2With this proposition, together with the above one, we have a test todecide whether or not, a De Bruijn sequence has maximum period length.Example: Suppose f : Z32 ! Z2 de�ned by f(x0; x1; x2) = 1 + x0 + x2 + x1x2.Now, let us verify if the function F : Z32 ! Z32 de�ned by F (x0; x1; x2) =(x1; x2; f(x0; x1; x2)) verify the conditions of Proposition 7.5.a): It is enough to show that F is injective, since it is clear that f is onto Z2.So, let us suppose that F (x0; x1; x2) = F (y0; y1; y2):51



Then, it must be:(x1; x2; f(x0; x1; x2)) = (y1; y2; f(y0; y1; y2)):Clearly it follows that x1 = y1, x2 = y2 and f(x0; x1; x2) = f(y0; y1; y2), andfrom these three equations also x0 = y0, and this condition is veri�ed.b): It is obvious.c): We have to calculate the rank of one incidence matrix for the correspondingdigraph GF , let us say, IF .Let us assume that the columns, whose correspond to the vertices areenumerated in the order:000; 001; 010; 011; 100;101;110; 111and the rows, in correspondence with the arcs are in the order:0001; 0010; 0101;1011; 0111;1110; 1100;1000:Then, IF = 0BBBBBBBBBB@ �1 1 0 0 0 0 0 00 �1 1 0 0 0 0 00 0 �1 1 0 0 0 00 0 0 �1 1 0 0 00 0 0 0 �1 1 0 00 0 0 0 0 �1 1 00 0 0 0 0 0 �1 11 0 0 0 0 0 0 �1 1CCCCCCCCCCAThe rank of this matrix is 7, so also this condition holds.As a conclusion, f de�nes a hamiltonian cycle in B(2; 3).Conclusions and open problemsIn this work have been studied many problems related to the fault-toleranceof interconnection networks based on digraph models. Also the fault-tolerance,together with some basic problems in interconnection networks design have beentreated for hyperdigraphs models.The wide and fault-diameters of the best known generalized cycles forinterconnection networks design have been given by �nding containers in them.These families contain other proposed good models. The results we have ob-tained coincide with the known ones for them. They also shown the goodfault-tolerance capability of these families.52



More generally, we have introduced some terminology in terms of whichwe have given bounds for fault-diameters in iterated line digraphs. Our boundsimprove the better known ones in many directions.We have presented some results about hyperdigraphs. As a starting pointwe have studied the connectivity. In order to do it, we have introduced someterminology to determine bounds when a given number of elements are removed.We have presented a characterization for maximally connected hyperdigraphs.The fault-tolerance in hyperdigraphs has been studied. First, we have statedbounds for the fault-diameters of maximally connected hyperdigraphs, extend-ing some known results on digraphs.In relation to the (d;N; s)-hyperdigraph problem we have extended thepartial line digraph, the line hyperdigraph, and of course, the line digraph tech-niques, by de�ning the partial line hyperdigraph. This technique is shown to begood for the mentioned problem. Moreover, the hyperdigraphs obtained havegood connectivity, expandability and easy routings. The partial line digraphhas been shown to give specially nice results when it is applied to the gener-alized Kautz hyperdigraphs. Also for line hyperdigraphs we have presented acharacterization in terms of digraphs.Finally, we include some properties we have obtained related to De Bruijnsequences of maximum period length. A test to decide if a function generates asequence of maximum period length has been given. The digraph formulationof the problem, is di�erent from others introduced before to study the problem.The study of wide and fault-diameters in any De Bruijn and Kautz gen-eralized cycle is an interesting open problem, to continue the working in thedirection of Section 2. Another line of future work could be the application ofthe techniques presented in this section to some families of hyperdigraphs.The bounds for the fault-diameters presented in Section 3 can also be ap-plied to other interesting families of digraphs. The problem consists in the cal-culus of the involved parameters for other families of digraphs. The terminologyintroduced in this section can be useful also to study other problems. From thefault-tolerance point-of view, an open problem is to study the fault-diameters ofgeneralized de Bruijn and Kautz digraphs and hyperdigraphs. Equally, it wouldbe interesting to study this parameter for partial line hyperdigraphs, or at leastfor partial line digraphs.It could be interesting to study the possibility of applying the partialline hyperdigraphs to the design of architectures for representing some opti-cal networks. Particularly, the partial line of Kautz hyperdigraphs could beinteresting.The digraph models that have been introduced for dealing with the DeBruijn sequences, is a new point of view to continue studying the problem.Another interesting analysis could arise from comparing the complexity of thisalgorithm, with the complexity of the problem itself.53
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