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Abstract

This work contains the most important results of the doctoral the-
sis ”Graphs and Hypergraphs as Interconnection Network Models” by
Daniela Ferrero supervised by Carles Padré. This thesis was done at the
Department of Applied Mathematics and Telematics of the Politechnical
University of Catalonia.

We can divide this work into three parts. In the first one, some re-
sults about the fault-tolerance of known models based on digraphs are
given (poin-to-point networks). The second part is devoted to the study
of hyperdigraphs based models (bus networks). This is a new area, so
before some equivalent results about the fault-tolerance, we need to prove
other topological properties. Finally, a little part concerning with random
sequences useful in stream cipher applications is presented.

1 Introduction

From some years ago, interconnection networks are becoming a very useful tool
for a wide range of problems of very different nature. Mainly, this is due to
the availability of technological possibilities to manage networks with a great
number of nodes and a high quantity of connections between them.

To deal with interconnection networks different classifications can be
stated. For instance, the objective of economical saving lead us to distinguish
between LANs (Local Area Networks) and WANs (Wide Area Networks). If we
focus on the nature of the communication links, networks can be classified into
point-to-point networks and bus networks [59].

Interconnection networks consisting of some processors and connections
between pairs of them are called point-to-point networks. They are usually
modeled by graphs. A bus networks consists in a set of processors and a set
of buses providing communication channels between subsets of processors. Bus
networks are represented by hypergraphs. In both cases, the communication
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links can be directed or not. To model networks based on unidirectional links,
directed graphs (digraphs) and directed hypergraphs (hyperdigraphs) are used.

In spite of their reliability and performance, networks of multiple bus
architectures have not been as much studied as those based on point-to-point
connections.

This work deals with some problems about graphs and hypergraphs re-
lated to this modelization.

When designing a communication system, most of the requirements re-
lated to the topology of the interconnection network can be stated in terms of
graphs or hypergraphs. The first of these requirements is the need of connecting
a large number of nodes with the minimum communication delay, when there is
a limitation on the number of connections supported by every node. To evaluate
the communication delay it is important to consider the number of processors
that should be traversed to send a message from any processor to another ar-
bitrary one. Although in some cases the minimization of this number is not
enough to assure the communication efficiency, it is always relevant in order to
simplify the network administration.

Another requirement for communication systems is the fault-tolerance.
That is, the network should still communicate with high performance, if possi-
ble, when some processors or links are faulty. Then, for interconnection network
models with the aforementioned conditions, an interesting property to study is
the vulnerability. That is, the incidence of some faults in the network commu-
nications. Traditionally, it was the variation in the maximum number of links
needed to connect any two processors, the parameter that has been used for this
purpose [5, 45, 53].

In practice, apart from theoretical measures of the fault-tolerance capa-
bility, it is important the routing facilities of a model. Specially, the possibility
to route efficiently in the presence of faults. For this reason, the studies of the
fault-tolerance by finding all the better alternatives to route, depending on the
faulty elements have particular interest [21].

Finally, a communication network is desired to be versatile, in the sense
that it may provide easy ways to add or remove some processors without loss
of performance. The expandability is related to the capability of a network
to increase or decrease its number of processors. This concepts measures this
facility in terms of the links that must be affected [10].

For point-to-point networks the basic requirements mean that the system
may have a high level of connectivity and also may consider the maximum
number of connections that a processor can admit to work efficiently. Different
conditions related to graphs have been presented to model this need. They
are basically expressed in terms of the order, the diameter and the maximum
degree. The goal is to find graphs with arbitrary large order and minimum
diameter for a given maximum degree. This generates a conflict between the
concepts involved. So, this situation gives rise to many optimization problems
concerning graphs. Basically, they consist in prioring a requirement and trying
to optimize the second one. For such problems, some particular families of
graphs and directed graphs have been presented. The De Bruijn and Kautz



digraphs [17, 52], the bipartite digraphs BD(d, n) [35] and the De Bruijn and
Kautz generalized cycles [40] are some of them. More generally, for directed
graphs there are of two techniques that were shown to be good for such problems.
The line digraph technique provide facilities to construct large digraphs with
arbitrary diameter and given minimum degree [36]. To obtain digraphs with
small diameter for fixed values of the order and maximum degree, the partial
line digraph technique has a good behaviour [33].

In relation to the fault-tolerance, there are particular studies for some
of the good particular families of digraphs mentioned in the above paragraph
[48, 54]. They are based on similar techniques, consisting in finding contain-
ers between any pair of processors. All these families are iterated line di-
graphs [35, 36], and the containers are based on this fact. Other methods were
required for the same problem in general digraphs obtained from the line digraph
technique. In this case, the problem was studied with the same point of view
used before to study the connectivity. So, theoretical bounds were presented,
but not describing containers, for example in [53].

Bus networks are a generalization of point-to-point-networks. However,
an additional parameter must be considered, and it is the number of processors
that a bus can connect. This impose restrictions on the number of vertices
connected to a hyperarc, and on the number of hyperarcs connected to a vertex.
These two values are bounded by the physical nature of the components. So, in
this case, we focus on hypergraphs with arbitrary order and minimum diameter
for fixed values of the minimum processor degree and the minimum bus size.
Again, it is impossible to impose all the desired conditions at the same time. As
for graphs, the approach to such problem is to treat it by optimization problems.
In one case all the parameters are fixed except the order, and the problem consist
in finding large hypergraphs with such parameters. The other situation is when
for given values of all the parameters, except the diameter, it must be minimized
[22]. As for graphs, there are also some particular proposed solutions. For
the directed case the generalized De Bruijn and the Kautz hyperdigraphs were
introduced [8]. For the case of size equal to one, these families coincide with
other solutions proposed before for the same problems restricted to digraphs.
Also the line digraph technique was generalized to hyperdigraphs [6]. The same
good results in order to construct large hyperdigraphs are obtained.

In the present work we study some problems related to the fault-tolerance
of digraphs. First for the particular good models for interconnection networks,
and then for general iterated line digraphs. Besides, we deal with other aspects
on hyperdigraphs. For example, the connectivity and the fault-tolerance. We
also propose a method for constructing hyperdigraphs of minimum diameter for
fixed order, degree and size. Some properties of such technique are given.

Next, we give a scheme of the organization of this work.

We present in Section 1 the definitions of the main concepts and the
notation that will be used in the rest of the work. The definitions and the main
known results about the families of digraphs and hyperdigraphs that are studied
in this thesis are also given in this section.

Sections 2 and 3 are devoted to the study of point-to-point networks.



In Section 2, we study the fault-tolerance of the De Bruijn and Kautz
generalized cycles. As it was mentioned, they were proposed as good models for
designing interconnection networks. In fact, they can connect a large number of
vertices in relation to the degree and the diameter. We deal with the problem
by finding containers between every pair of vertices. The values obtained show
that the fault-tolerance capability of these families is optimal. The results of
this section correspond to the publications [26, 27].

The fault-tolerance of interconnection network models defined by the it-
eration of the line digraph technique is studied in Section 3. There, some new
parameters are introduced in order to improve the known theoretical bounds on
fault-diameters. The general bounds obtained, when calculated for some par-
ticular digraphs, coincide with the exact values. So, the bounds are optimal at
least for some cases. The results in this section have been presented also in our
paper [28].

We treat some problems related to bus networks in Sections 4 and 5.

In Section 4, we define some parameters in order to study the connectivity
and fault-tolerance of directed hypergraphs defined by the iteration of the line
hyperdigraph technique. For the connectivity, similar results that for iterated
line digraphs are obtained. In order to analise the fault-tolerance, the fault-
diameters are introduced. We obtain theoretical bounds, as a generalization of
the known results for digraphs. The results stated in this section were presented
in [24, 29, 30].

The partial line digraph technique is defined for directed hypergraphs in
Section 5. Similar results that for digraphs are proved. The partial line hyper-
digraph is shown to generalize also the line hyperdigraph technique.Partial line
hyperdigraphs are shown to have large order for their diameter, minimum degree
and minimum size. Besides, they present good connectivity and expandibility.
Also a characterization of line hyperdigraphs in terms of line digraphs is given.
The above characterization, in the case of line hyperdigraphs, is a proof of a
conjecture introduced in [6]. Our paper [31] collects also the results in this
section.

Finally, we include a section about De Bruijn sequences. Particularly,
the De Bruijn sequences of maximum period length are interesting because of
their randomness properties [14, 15, 19, 51]. They have a great number of
applications in many areas of computer science and abstract algebra. Specially
for stream ciphers, needed to provided security services [18, 56]. Actually, the
Asynchronous Transfer Mode (ATM) and the Broadband Integrated Services
Digital Network (B-ISDN) are the most promising techniques for high speed
networks, and both scenarios require ciphering services [57].

In Section 6 we expose the problem of finding all De Bruijn sequences
of maximum period length in terms of digraphs. By a matricial analysis of the
problem we obtain some interesting properties. Also a test to decide whether
or not a sequence is a De Bruijn one of maximum period length is presented.
These results in this section correspond to [32].



2 Graphs, hypergraphs and interconnection
networks

2.1 Basic definitions about graphs

We present here some definitions used in the following sections. For details
and more information, see for example [16, 41]. A directed graph G = (V, A)
consists of a set of vertices V and a set A of ordered pairs of vertices called
arcs. Usually, they are also called digraphs for short. The arcs in the form
(z,z) are called loops. The cardinality of V is the order of the digraph. If
(z,y) is an arc, it is said that z is adjacent to y and that y is adjacent from
z. The set of vertices which are adjacent from(to) a given vertex v is denoted
by Tt (v)(I'~(v)) and its cardinality is the out-degree of v, d¥ (v) = |I'*(v)|(in-
degree of v,d~ (v) = [T~ (v)]). Its minimum value over all vertices is the minimum
out-degree,d™ ,(minimum in-degree,d™) of the digraph G. The minimum degree
of G is d = min{d*,d~}. The mazimum degree d is defined analogously.

A path of length h from a vertex z to a vertex y is a sequence of vertices
T =20, L1y, Ep—1, Ly = y where (z;,2;41) is an arc. A digraph G is strongly
connected, or simply connected, if for any pair of vertices z, y there exists a path
from x to y. The length of a shortest path from « to y is the distance from x to
y, and it is denoted by d(z,y). Its maximum value over all pairs of vertices is
the diameter of the digraph, D(G). If GG is not strongly connected, D(G) = oo.

The vertex-connectivity k = k(G) of a digraph G = (V, A) is the minimum
cardinality of the subsets of vertices F C V such that G — F is not strongly
connected or is trivial. The arc-connectivity A = A(G) is the minimum number
of arcs whose deletion disconnects the digraph. For more information see [38].

A cycle in a digraph G is a path starting and ending at the same vertex.
A hamiltonian cycle is one that contains all the vertices of G exactly once.
An eulerian cycle contains all the arcs of (¢ exactly once (but it could repeat
vertices).

Given two digraphs, G and G’, on N and N’ vertices, respectively, N <
N, the index of expandability of G to G', e(G, G'), is defined as the minimum
number of arcs that have to be deleted from G to obtain G' by adding N’ — N
vertices and some appropriate arcs. [10].

2.2 The line digraph and the (d, D)-digraph problem

The (d, D)-digraph problem consists in finding digraphs with order as large
as possible for fixed values of the maximum out-degree d and the diameter D
[12, 34, 40]. The order, let say N of a digraph with maximum out-degree d and
diameter D is upper bounded by the Moore bound, M (d, D),

D1, ifd=1;
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Due to the non-attainability of the Moore bound [13], the study of the



(d, D)-digraph problem is based in finding digraphs with order d, diameter D
and order as close to M (d, D) as it would be possible.

In the line digraph [36] LG of a digraph G each vertex represents an arc
of G, that is, V(LG) = {uv| (u,v) € A(G)}. A vertex uv is adjacent to a vertex
vw if v = w, that is, whenever the arc (u, v) of GG is adjacent to the arc (w, z).
The maximum and minimum out and in-degrees of LG are equal to those of G.
Therefore, if G is d-regular with order n, then LG is d-regular and has order dn.
Besides, if G is a strongly connected digraph different from a directed cycle, the
diameter of LG is the diameter of G plus one unit. So, in the same conditions
for G, L*G is d-regular, has diameter D + k and order d*n, that is, the order
increases in an asymptotically optimal way in relation to the diameter. As a
consequence, the iteration of the line digraph operation is a good method for
the (d, D)-digraph problem.

The set of vertices of the iterated line digraph L*G can be considered as
the set of all paths of length £ in G, that is, the set of the sequences of vertices
of G with length k 4+ 1, xox1...2x, where (2, 2;41) is an arc of G. A vertex
X = oy ...25 in LFG is adjacent to the vertices y = x1... 252541 for all zp4q
adjacent from xj. A path of length h in L*G can be written as a sequence
of k + h 4+ 1 vertices of (. The vertices of this path are the subsequences of
k 4+ 1 consecutive vertices of G. Because of this notation, iterated line digraphs
admit very simple algorithms to find short paths between vertices. Observe
that between any pair of vertices of L* G there exists at most one path of length

h<k+1.

2.3 The partial line digraph and the (d, N)-digraph prob-
lem

The (d, N)-digraph problem consists in finding digraphs G with minimum diam-
eter for fixed values of the maximum out-degree d and the order N [12, 34, 40].
Since this problem has sense only for d > 1, by the Moore bound, if the diameter
is D,

dP+l —1

d—1

From this inequality it is easy to find a lower bound for the diameter D,

N < M(d,D) =

D> flogy (N(d—1) + 1)] - 1

So, the (d, N)-digraph problem is based in finding digraphs with maxi-
mum degree d, order N and diameter equal, or at least close, to the minimum
possible value.

A partial line digraph [33] of a digraph G = (V, F) with minimum degree
at least 1, is defined from a set E’ of arcs of G with V = {v: (u,v) € F'} . Tt
is denoted by LG = (V(LG), E(LG)) with V(LG) = {uv : (u,v) € E'} and a
vertex uv adjacent to the vertices v'w, for each w adjacent from v, where v’ = v
if vw € V(LG), or any other arbitrary vertex adjacent to w if not.



Since G has minimum degree at least 1, always exists a set E’ with the
conditions asked to construct the partial line digraph. Also, if E/ = E, then LG
coincides with LG. That is, the order of LG is between the order of G and the
order of LG.

Partial line digraphs are shown to preserve the minimum degree and
increase the diameter in at most one unit. Then, this technique is a good
strategy for the (d, N)-digraph problem.

Besides, partial line digraphs tend to increase the connectivity (with a
natural bound given by the minimum in-degree which is not preserved). Be-
sides, easy routing algorithms can be defined in them. Finally, the technique is
versatile in the sense that simple methods can be used to increase or decrease
the order, maintaining the maximum out-degree constant, and with variations
in the diameter of at most one unit.

2.4 Some interesting families of digraphs
2.4.1 De Bruijn digraphs and sequences

The De Bruijn digraph [17] denoted by B(d, D) has set of vertices ZZ. Any
vertex xowry...xp_1 is adjacent to the vertices x1...2p_1xp, for every zp in
Zy.

Besides of this alphabetical definition of the De Bruijn digraphs, it is
possible to define them in terms of iterated line digraphs. In fact, if we denote
by K4 the complete digraph (i.e. with order d and an arc joining every two
vertices), then B(d, D) = LP~1K,.

From any of the above definitions it is easy to conclude that B(d, D) is
d-regular, has diameter D and order d”. Then, since:

d? > dTTlM(d, D)
these family of digraphs has good properties for the (d, D)-problem.

Since B(d, D) = LY ~1K, there paths can be represented by sequences of
vertices of K 4. Particularly, cycles can be represented by sequences. A De Bruijn
sequence of order D over Zg is the corresponding sequence for a hamiltonian
cycle in B(d, D).

2.4.2 Reddy-Pradhan-Kuhl digraphs

The De Bruijn digraph B(d, D) can also be arithmetically defined as the digraph
with vertex set Z,, with n = d”, and a where the vertex z is adjacent to the
vertices dx + ¢ for any value of ¢ in Z4. If we remove the condition n = d?,
and let n to be any positive integer, we obtain the generalized De Bruijn or
Reddy-Pradhan-Kuhl digraphs [55], RPK (d,n). Then, RPK(d,n) = B(d,d").

For any values of d and n, the digraph RPK (d, n) has naturally, order
n and degree d. Tt is also known that its diameter is [log,n]. That is, the
diameter is minimum whenever (d” — d)/(d — 1) < n < d?, and exceed the
minimum value in one unit if A1 +1 < n < (dP —d)/(d - 1).



They are also iterated line digraphs. More precisely, LRPK(d,n) =
RPK(d,dn).

2.4.3 Kautz digraphs

The Kautz digraph [52] denoted by K (d, D) has set of vertices Z2. Any vertex
oy ...rp_1 is adjacent to the vertices xy...2p_12p, for every xp in Zg4, with
the condition #p_1 # zp.

Let K denote the complete digraph without loops (i.e. with order d and
an arc joining every two different vertices). Another possible definition of the
Kautz digraphs is K(d, D) = LD_1K2+1-

From any of the above definitions it is easy to conclude that K(d, D) is
d-regular, has diameter D and order d” 4+ d”~'. Then, they are closer to the
Moore bound that the De Bruijn digraphs. In fact,

d2

d? 4 dP=1 > M(d, D)

so, these family of digraphs has better properties for the (d, D)-problem.
Another interesting property is that between any two vertices of K(d, D)

there exists a unique path of length D — 1 or D.

2.4.4 Imase-Itoh digraphs

In the Imase-Ttoh digraph II(d,n) [46, 47], n < d < 2, the set of vertices is Zj,
and a vertex x is adjacent to the vertices —dx — ¢, for t = 1,2,...,d. These
digraphs are also called generalized Kautz, since 11(d,d? + dP~1) = K(d, D).
For every values of d and n, II(d, n) is d-regular and has order n. It only
has loops when n is not a multiple of d 4+ 1. If D is the diameter of I1(d, n), it
can be shown:
lloggn] <D < [log;n].

As a consequence, the diameter of I1(d,n) never exceeds the diameter of
the digraph RPK(d,n). Then the diameter of I7(d,n) is minimum or exceeds
the minimum possible value in at most one unit, but is in general, smaller than
the diameter of the digraph RPK(d, n).

2.4.5 BD(d,n) digraphs

A bipartite digraph [35] is a digraph whose set of vertices can be partitioned into
two nonempty sets, such that all the arcs are adjacent from a vertex in one part
to a vertex in the other one. The bipartite digraphs BD(d, n) were introduced
when studying the (d, D)-problem restricted to bipartite digraphs. In this case,
in the same way that it was calculated the Moore bound for general digraphs,
we can find a better one, let us say M2 (d, D).

For any integers d, n, n > d > 2, the bipartite digraph BD(d, n) has set of
vertices Zg x Zy, = {(a, i) : « € Zy,1 € Zy, }, and every vertex («, ) is adjacent
to the vertices (1 — o, (—1)%d(i + ) + ¢), for every t =0,1,...,d— 1.



It is clear that B(d, n) is d-regular, has order 2n, and if D is the diameter,
it holds:
lloggn] +1< D < flogyn]| + 1.
For some values of n the diameter can be exactly calculated. Particularly,
for BD(d,dP~1 + d”~3) the diameter is D. Moreover

d*—1

2dPt 4 dP Y > S

M®(d, D),

so we conclude that the digraphs BD(d,d?~! + dP?~3) are a good solution to
the (d, D)-problem for bipartite digraphs.

Also in relation to the (d, N)-digraph problem in the bipartite case, the
family BD(d, N) has good properties. In fact, it was shown that its diameter
exceeds the minimum possible value arising from M?(d, D) in at most one unit.
Particularly, if N = dP?~! + dP=*% =3 for some integer k, 0 < k < [(D — 3)/4],
the minimum value for the diameter is attained.

Finally, BD(d,d?~t + dP=3) = LP=3BD(d,1 + d?), and in general,
LBD(d,n) = BD(d, dn).

2.4.6 Large generalized cycles

A generalized p-cycle is a digraph whose set of vertices is partitioned in p parts

that can be cyclically ordered in such a way that any vertex is adjacent only

to vertices in the next part. That is, V(G) = U V, and the vertices in the
Q€Z,

partite set V,, are only adjacent to vertices in V.11, where the sum is in Z,.

Observe that, for instance, a digraph is a l-cycle or a bipartite digraph is a

generalized 2-cycle.

The conjunction operator was introduced in [40]. It gives rise to gener-
alized cycles. The conjunction of a directed cycle of length p, let say C),, with
a digraph G = (V, A4), C, ® G, has set of vertices Z, x V and a vertex (a, )
is adjacent to the vertices (o + 1,y) for any y adjacent from z in the digraph
G. Observe that €}, @ G is a generalized p-cycle for any digraph G'. The line
digraph of €}, ® G is isomorphic to €, @ LG. In fact, it is not difficult to see
that the mapping (o, z)(or + 1,y) = (o + 1, 2y) defines a digraph isomorphism
between L(C, ® G) and C, ® LG.

Also in [40], making use of the conjunction operator, were introduced two
families of generalized cycles. These are the De Bruijn and Kautz generalized
cycles, BGC(p,d,d**') and KGC(p, d, d?** +d") respectively. They have large
order for their degree and diameter.

The De Bruijn generalized cycle BGC(p,d, d**1) is defined to be C}, ®
B(d,k + 1), where B(d,k + 1) is the De Bruijn digraph with degree d and
diameter k£ + 1. The De Bruijn digraph is an iterated line digraph, B(d, k +
1) = Lng, where K is the complete digraph with a loop on each vertex.
Therefore, BGC(p,d,d**?) is also an iterated line digraph, BGC(p,d,d**t1) =
Co@LFK; = L*(C,@ K}}) = L* BGC(p, d, d). The set of vertices of the digraph



BGC(p,d,d)is Z, xZq and a vertex («, z) is adjacent to (a+1, y) for any y € Z4.
This digraph is d-regular and has diameter p. The vertices of BGC(p, d, d"+1),
which is d-regular and has diameter p 4+ k, can be seen as sequences of vertices
of BGC(p,d,d) (a,yo)(ev + L,4n) ... (¢ + k,yx), where o € Z, and y; € Zg,
i=0,1,.... k.

The set of vertices of the Kautz generalized cycle KGC(p,d,n) is Z, X Z,,.
If 0 < o < p— 2, the vertex (o, z) is adjacent to (« + 1,dx + t) for any
t =0,1,...,d — 1. The vertex (p — 1,z) is adjacent to (0,—dz — (d — t))
forany t =0,1,...,d — 1. The digraph KGC(p,d,dP 4+ 1) is d-regular and has
diameter 2p—1. The generalized cycle K GC(p, d, d?t*+d*) is isomorphic to the
iterated line digraph L* K GC(p, d, d?+1). Then, it is d-regular and has diameter
D = 2p+k—1. The vertices of KGC(p,d,d?** 4+ d*) can be written as paths of
length k in KGC(p,d,d?+1). That is, sequences (o, yo)(av+1,91) ... (a+k, yx),
where o € Z, and y; are vertices of the generalized cycle KGC(p,d,d" + 1),
i=0,1,...k

Observe that BGC(p,d,dP) which has diameter 2p — 1 and order pdP,
is isomorphic to the directed butterfly By(p) [1]. Besides, K(d, D), the Kautz
digraph of degree d and diameter D is the same that KGC(1,d, d”+dP~1), the
Imase-Ttoh digraph [46, 47], GK (d, n), can be defined as KGC(1,d,n), and the
bipartite digraphs BD(d, n) [35] coincides with KGC(2,d,dP P+ 4 ¢P—2p+1),

For a p-generalized cycle of minimum degree d and diameter D, the Moore

like bound is M%“(p,d, D) = sz;ri—zdrl, being r an integer 0 < r < p— 1 such
that D — (p — 1) = pm + r. From this inequality can be obtained that the
minimum diameter of a p-generalized cycle of minimum degree d and order n is
DS (p,d,n) = [logy(n(d” — 1)+ 1)] - 1.

If Dy, Dy are respectively the diameters of KGC(p,d,n) and
BGC(p,d,n), then D (p,d,n) < Dy < D; < D%“(p,d,n) + 1.

The digraphs BGC(p,d,d*t1), 0 < k < p — 2 attain the bound
MY (p,d, D) when p < D < 2p— 2. Also the bound M%“(p,d,2p — 1) is
attained by the digraph KGC'(p,d,d? + 1). More generally, if k& > p, for the
digraphs KGC(p,d,d*t* + d*) = LK KGC(p, d, d? + 1) hold:

d2p—1
dzr
so the bound is attained when 2p — 1< D < 3p — 1.

p(d"tF +d¥) > M (p,d, D)

2.5 Containers, wide and fault-diameters

Let  and y be two vertices of a digraph . Two paths from z to y are said to
be vertex-disjoint or disjoint if they do not have any internal vertex in common.
A container from a vertex x to another vertex y is a set C'(z, y) of disjoint paths
from x to y. The width w(C(x,y)) of a container C'(z, y) is the number of disjoint
paths that it contains, and its length, [(C(c,y)), is the maximum length of its
paths. For an integer s, 0 < s < k((), the s-width-distance from x to y, ds(z, y),
is the minimum length of all containers of width s from  to y. Finally, the s-
wide-diameter of the digraph 7, d;(G), is the maximum s-wide-distance among
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all pairs of different vertices in G. The (s — 1)-verter-fault-diameter, D;(G),
of a digraph G is the maximum of the diameters of the digraphs obtained by
removing at most s — 1 vertices from (. The (s — 1)-arc-fault-diameter, D (G),
is defined analogously [43, 44, 45].

In general, the following relations hold between the wide-diameter and
the fault-diameters: d;(G) > D, (G) and ds(G) > DL (G). From the definition,
dy = D1(G), dy = D{(G) and coincide with the diameter of G. Clearly, D, (G) <
D, 41(G) and D (G) < Di,,(G). Also there exist some relations between these
two parameters, the connectivities and the diameter. If k = &(G) there is a
container of width x between every pair of distinct nodes. In particular, since
D(G) = oo if GG is not strongly connected, the vertex-connectivity & = x(G)
and the arc-connectivity A = A(G) are, respectively, the minimum values of
s satisfying Ds41(G) = oo and D), (G) = oco. Also from Menger’s Theorem
ds41(G) = 0 if s = k(G), and d}, 1 (G) = o0 if 5 = A(G).

Some fault-diameters have been calculated by finding disjoint paths be-
tween any pair of vertices. For example, for the de Bruijn and Kautz di-
graphs [20, 48], the bipartite digraphs BD(d, n) [54], and Flip-trees in [50].

The fault-diameters of general iterated line digraphs were considered
in [53]. It was proved there that, if an iterated line digraph L*G has maximum
connectivity, its fault-diameter is bounded by D(L*G) + C, where C' depends
on some properties of the digraph G, but does not depend on the number of
iterations k.

2.6 Basic definitions about hypergraphs

We present some of the most relevant concepts we are going to use. For ad-
ditional information, see for instance [6, 7, 8, 37]. A hyperdigraph H is a pair
(V(H),E(H)), where V(H) is a non-empty set of vertices or nodes, and E(H)
is a set of ordered pairs of nonempty subsets of V(H), called hyperarcs. If
E = (E7,ET) is a hyperarc, we say that F~ is the in-set, E* is the out-set
of E, and that E joins vertices in E~ to vertices in ET. Its in-size(out-size) is
the cardinal of E~, |[E~|(|ET|). If v is a vertex, the in-degree(out-degree) of v
is the number of hyperarcs containing v in the out-set(in-set), and it is denoted
by d- () (d* (0)).

If H is a hyperdigraph, its orderis the number of vertices, |V(H)|, denoted
by n(H). The number of hyperarcs is usually denoted by m(H). The mazimum
in-size and maximum out-size of H are respectively defined by

sT(H)=max{|E~|: F € &£(H)}, sT(H) =max{|EY|: F € £(H)}
Similarly, the mazimum in-degree , mazimum out-degree of H are
d=(H) = max{d~(v) :v € V(H)} , d*(H) = max{d* (v) : v € V(H)}

We denote s(H) = max{st(H),s™ (H)},d(H) = max{d*(H),d™ (H)}. We say
that a hyperdigraph H is d-regularif d=(H) = d¥(H) = d. Also H is s-uniform
if s7(H) = sT(H) = s. Note that when s = 1, H is a digraph.
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A path of length k from a vertex u to a vertex v in H is an alternating
sequence of vertices and hyperarcs v = vg, F1,v1, Fo,v2,..., Ex,vp = v such
that v; € F;;, (i = 0,...,k—1) and v; € Et, (i = 1,...,k). The distance
from u to v, d(u, v), is the length of the shortest path from u to v. The diameter,
D(H), is the maximum distance between every pair of vertices of H.

A hyperdigraph is connected if there exists at least one path from each
vertex to any other vertex. The verter-connectivity, x(H), of a hyperdigraph H,
is the minimum number of vertices to be removed to obtain a non-connected or
trivial hyperdigraph (a hyperdigraph with only one vertex). Similarly is defined
the hyperarc-connectivity, A\(H).

Any two paths in H are vertex-disjoint if they have no internal vertices
in common, and are hyperarc-disjoint if they do not share hyperarcs. The
Menger’s theorem stablish that the vertex(hyperarc)-connectivity is the num-
ber of vertex(hyperarc)-disjoint paths between any pair of vertices. In fact,
such theorem was enunciated for graphs [49], but different proves can be easily
adapted to hyperdigraphs [6].

The dual hyperdigraph, H*, of a hyperdigraph H has its set of vertices in
one-to-one correspondence with the set of hyperarcs of H, and for every vertex
v of H, it has a hyperarc, (V~, V™), such that a vertex e € V~, if and only if,
v€ Etandec VT, ifand only if, v € E~. R

__ The_underlying digraph of a hyperdigraph H is the digraph H =
(V(H),A(H)) with V(H) = V(H) and A(H) = {(u,v) : IF € E(H),u €
E~,v € ET}. That is, there is an arc from a vertex u to a vertex v in Hif
and only if there is a hyperarc joining u to v in H. So, paths in H and H are
in correspondence, and this implies D(f[) = D(H) and Ki(ﬁ) = k(H). We are
going to denote K = Ki(ﬁ) and A = /\(ff)

The bipartite representation of a hyperdigraph H is a bipartite digraph
R = R(H) = (V(R), A(R)) with set of vertices V(R) = Vo(R) U V1(R), where
Vo(R) = V(H) and Vi (R) = E(H), and set of arcs

AR) ={(u,E)|ue Vo, E€Vi,u€ ET}U{(F,v)|veE Vo, FeVi,ve Ft}.

Observe that, if u, v are two vertices of H, a path of length & from u to v in H
correspond to a path of length 2k in R(H) and, then, dr(u,v) = 2dg(u, v).

2.7 The line hyperdigraph and the (d, D, s)-hyperdigraph
problem

The (d, D, s)-hyperdigraph [37] problem consists of finding hyperdigraphs with

minimum degree d, diameter D, maximum size s, and order as large as possible.

The maximum order for such hyperdigraphs is given by the Moore bound for
hyperdigraphs. Tt is denoted by M (d, D, s), and its value is:

M(d,D,s) =1+ds+ (ds)* +... 4 (ds)? = ((ds)’T' = 1)/(ds — 1).

This bound cannot be attained if D > 1 unless H is a directed cycle [22].
Then, in relation to the (d, D, s)-hyperdigraph problem, it is interesting to find
families of hyperdigraphs with order close to the corresponding Moore bound.
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The line hyperdigraph of H = (V(H),E(H)) is defined in [6] as the hy-
perdigraph LH = (V(LH),&(LH)),

V(LH) = UEeg(H){(UEU) rue BE v e E+}
E(LH) = Uyeym){(EvF) :v € Et,v € F™}

with (FvF)™ = {(wEv):w € E~} and (EvF)t = {(vFw):we FT}.

The iterated line hyperdigraph L*(H) is defined by L*(H) = LL*~'(H),
with LO(H) = L(H). In L*(H) the vertices are represented by paths of length
kin H, voE1v1 Es ... Epvg, the hyperarcs have the form Fovy F1vs...v; Fy, and
the paths of length [ can be viewed as sequences voFiv1FEsy. .. Fiprviqr. Line
hyperdigraphs iterations tend to increase the connectivities.

From its definition, and in a similar way than for digraphs, the iteration
of the line hyperdigraph result a good method for the (d, D, s)-hyperdigraph
problem.

2.8 The (d, N, s)-hyperdigraph problem

The (d, N, s)-hyperdigraph problem was introduced in [37] and consists in find-
ing directed hypergraphs with order N, maximum out-degree d, maximum out-
size s and minimum diameter.

Analogously than for digraphs, from the Moore bound, for a hyperdigraph
with order /N, maximum out-degree d, maximum out-size s and diameter D, it
is easy to find a lower bound for the diameter D,

D > [log,, (N(ds—1)+1)] —1

So, the (d, N, s)-hyperdigraph problem study is directed to finding hy-
perdigraphs with maximum degree d, maximum size s, order N and diameter
close to the lower bound founded.

2.9 Generalized Kautz and De Bruijn hyperdigraphs

In [8, 6] were introduced the generalized De Bruijn and Kautz hyperdigraphs.
There it was shown that they have good order in relation to their degree and
size. In fact, for the case of hyperarc size 1 (digraphs), they are a generalization
of the best known families according to the aforementioned criteria.

The generalized Kautz hyperdigraphs, are defined as it follows. Let n
be the number of vertices and d the vertex out-degree. Choose the number of
hyperarcs m and the out-size s, with the conditions dn =,, 0 and sm =, 0.
The generalized Kautz hyperdigraph GK (d, n, s, m) has as vertices the integers
modulo n and as hyperarcs the integers modulo m. The incidence rules are:

1. A vertex v is incident to every hyperarc E: E=,, dv+a,0<a<d-1

2. The out-set of the hyperarc Fis: u=, —sF — 3,1 <3 <s

13



If GK(d,n,s,m) is the generalized Kautz hyperdigraph with degree d,
order n, size s and m hyperarcs,

é\K(d, n,s,m) = I1(ds,n)

where II(ds,n) is the generalized Kautz digraph.

The generalized De Bruijn hyperdigraphs were defined with the purpose
of having a similar property for them. That is, let GB(d, n, s, m) be a generalized
De Bruijn hyperdigraph with degree d, order n, size s and m hyperarcs,

G/E(d, n,s,m) = RPK(ds,n)

where RPK (ds,n) is the generalized De Bruijn digraph.

Such property can be achieved by two ways. So, we have two non-
isomorphic schemes to define a generalized De Bruijn hyperdigraph, let us say,
GBi(d,n,s,m) and GBy(d,n,s, m).

In the first scheme, we give an alphabetical definition. Let A, B be two
sets of sizes d and s respectively. If k is a positive integer, [AB]* denotes any
sequence of 2k elements in the form (a,b,...,a,b) where a € A,b € B.

The vertices of GBy(d, n, s, m) are [BA]P and the hyperarcs [A][BA]P~[A]. If
FE = (E~,ET) is a hyperarc labeled (ag, b1,a1,...,bp_1,ap_1,ap), then

E~ ={(B,a0,b1,a1,...,bp_1,ap_1) : B € B}
ET = {(bl,al, .. .,bD_l,aD_l,ﬁ, aD) : ﬁ c B}

From the vertices point of view, the hyperarcs such that a vertex s is adjacent
to them, are founded by shifting the vertex label to the left by one, disposing of
b1, and introducing a new element of A at the right end. The set or hyperarcs
that a vertex is adjacent from is founded by shifting all letters (except Ap) to
right by one (disposing of bp) and adding an element of A from the left end.

In the second scheme, GB;(d, n, s, m) is defined arithmetically. First we
impose dn =, 0 and sm =, 0. Assume that the vertices are numbered from
0 to n — 1 and the hyperarcs from 0 to m — 1. Then, the vertex v is adjacent
to the hyperarcs £, =,, dv + «, for any a = 0,...,d — 1. The out-set of the
hyperarc E consists of the vertices V; =, sE + 3, for any 3 =10,...,s — 1.

For the generalized Kautz hyperdigraph of degree d and size s on n ver-
tices and m hyperarcs, the diameter D is such that n = (ds)? + (ds)P?~!. In
both schemes of the generalized De Bruijn digraph of degree d and size s on n
vertices and m hyperarcs, G1(d, n, s, m) or Ga(d, n, s, m), the diameter,D, has
the property that n = (ds)”.

3 Containers in large generalized cycles

3.1 Introduction

By Menger’s theorem it is possible to obtain upper bounds for the fault-
diameters from disjoint paths of bounded length between every pair of vertices.
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To evaluate how good are they, is usual to find also lower bounds and then com-
pare them with the upper ones. This technique was introduced in [48] for the De
Bruijn and Kautz digraphs, and was also used in [54] for the bipartite digraphs
BD(d,d?~1 +dP=3). In [48] it was proved the existence of a container of width
d and length at most the diameter plus two unit between any two vertices in
the d-regular De Bruijn or Kautz digraphs. Besides, it was shown that at most
two paths have length equal to the diameter plus two units. This result was
improved in [20]. There it was proved that at most one path has length equal to
the diameter plus two units. For the bipartite digraphs BD(d, d” =1+ d"”~3) the
it was proved in [54] the same result that in [48] for the De Bruijn and Kautz
digraphs.

In all the above cases, paths are given and proved to be disjoint making
use of the fact that the families treated are iterated line digraphs. We find
lower bounds for fault-diameters of any generalized cycle and calculate them for
the above mentioned families. Then, we compare these values with the upper
bounds obtained by giving disjoint paths in them. From this comparison we
obtain the exact value for the wide and fault-diameters. Moreover, we show
that such values are optimum for these families.

3.2 Lower bounds

If G is a digraph with D, (G) = D', there exist at least s paths (not necessarily
disjoint) of length at most D’ between any pair of non-adjacent vertices of G.

Let G' be a generalized p-cycle with maximum out-degree d and order
n. Let r such that Ds(G) = D/, with D' = (p—1) = pm+rand 0 < r <
p—1. Then, if x € V,_, and y € V,, are two non-adjacent vertices of (G, there
must exist s paths of length at most pm + r from = to y. There are at most
d"(1 4+ dP +d? + ...+ d’™) paths of length less or equal than pm + r from a
vertex in V,_, to the vertices in V,. Therefore,

p(1+ [(dP +d? + ...+ dP™)/s]), if r = 0;
n=> Vol < pld+ [(dPH +d?H 4 4 drmH)/s]), ifr =15
a€Zy p(ld" (1 +dP +...4+dP™)/s]), if r #£0,1.
Then, Dy(G) =D ' =p(m+1)+r+ 1>, where
Mogy(s(% —1)(d* —1) +d’)] =1,  ifr=0;
= q flogy(s(h —d)(d" — 1) +dP*)] — 1, ifr =1
[logy(5s(dP — 1) +d")] — 1, if r#£0,1.

Therefore, if G is a generalized p-cycle with maximum out-degree d and order
n,then, D,(G) > ming<,<p_1 " = £, We have found a lower bound for the
(s — 1)-vertex-fault-diameter.

Proposition 3.1 Let G be a generalized p-cycle with maximum out-degree d
and order n. Then, for any s = 2,...,d,
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. — no__ _ +1 _
d(G) > D,(G) > Dainls, pydym) = [log, (5 (2 = d) (@ = 1) +a+1) | - 1. O

If G is a digraph with D (G) = D', there must exist at least s + 1 paths
of length at most D’ between any pair of different vertices. Reasoning in the
same way as in the vertex case, we can obtain a lower bound for the (s — 1)-
arc-fault-diameter of a generalized cycle.

Proposition 3.2 Let G be a generalized p-cycle with maximum out-degree d
and order n. Then, for any s = 2,...,d,

d'(G) > D'(G) > Dy (s, p,d,n) = [bgd (5 (g - 1) (d — 1) + dpﬂ ~1.0

So, we have obtained lower bounds for the s-wide-diameter and the s-
fault-diameter.
The values of these bounds for the families we are studying are:

e For BGC(p,d,d*tY), if s =2,...,d:

din > Dt (p, d, pd*+) = p+ k + 15
d/;nln Z D/;nln(p’ d, pdk+1) — p_|_ k + 1.

e For KGC(p,d,d*t" + d*), if s =2,...,d:

Pt > DI (p,d, p(dPt* +d*)) = 2p + k;
d;mln Z D/znln(p’ d, p(dp+k 4 dk) — 2p+ k.

That is, the bounds on vertex and arc-fault-diameters, are the diameter plus
one unit in both cases.

3.3 Containers and fault-diameters
3.3.1 The De Bruijn generalized cycles BGC(p,d,d**?)

Disjoint paths of bounded length between any two vertices of the generalized De
Bruijn digraph BGC(p,d,d**Y), p > 2, are given in this section. Particularly,
we prove, in a constructive way, that there exists a container of width d and
length at most p+k+2 between any pair of different vertices of BGC (p, d, d"+1).
Besides, only one path of this container has length p4+ k& + 2 and the other paths
have length at most p+ & + 1.

First of all, we present these containers in the smallest digraph in this
family: the generalized cycle BGC(p,d,d) = C, ® K. Next, we show how to
construct containers of bounded length between any pair of adjacent vertices of
BGC(p,d,d"t1). Finally, taking into account that these digraphs are iterated
line digraphs, we prove that containers between any pair of different vertices can
be founded from containers between vertices in a smaller digraph in the same
family.
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Proposition 3.3 Let x and y be two (not necessarily different) vertices of the
generalized cycle BGC(p,d,d) = C, ® K], p > 2. There exists in this digraph
a container of width d from x to y with length at most p+ 1.

Proof: We can suppose that x is in the partite set Vo = {0} x Z; and that
y€eVy={h} xZg 1 <h<p(of course, V, = V;). If p > 3 and h # 1, 2, there
exist many different ways to find a container with width d and length & from
r to y. Any path of these containers is in the form za .. -0‘2_13/7 1 <1 <d,
where a! € V, and ol # of if i # j. If p > 2 and h = 1, we have a path of
length 1, the arc (#,y), and we can take d — 1 disjoint paths with length p+ 1
in the form xaﬁ...a;_la;y, 1 <i<d~—1, where o’ € V., al # o if i # j,
ol # y and a; # z. Finally, if h = 2 there are exactly d paths of length 2 from
x to y, which are disjoint.O

Let x, y be a pair of adjacent vertices of BGC(p,d,d"t1). Since this
digraph is the iterated line digraph L*(C, ® K}), we can put x = zor1...2%
and y = 21 ...2x%k41, Where z,, 0 < r < k+1, is a vertex of C}, ® K. Besides,
we can suppose that z, = (r,j) € Z, x Zg4, that is, that z, is a vertex in
the partite set V.. of the generalized cycle C}, ® K. We want to construct d
disjoint paths with length at most p + k£ 4+ 2 from x to y. The first of these
paths is the arc (x,¥) = #o#1...252541. The other paths are going to be
constructed from disjoint paths from z; to z; in €, @ K} and will have the
form zox1 ... TKUE410k42 -+ Qgr X1 ... TpZp41 , With » < p 4 1. Since these
paths can not contain the arc (x,y), we must take ax11 # 2541 and ap4r 7 ®o.
That is, we have to find a container of width d — 1 and length at most p + 2
from z; to x1 in Cp ® K] such that all the paths in it have their first and last
arcs, respectively, different from (x, zx41) and (2o, z1).

If p>3and k = h (modp), 1 < h < p—2, then zp = 21 or 3 <
d(zp,21) = p— h+ 1 < p. In this case, we consider d — 1 paths from zj to z1
in the following form: ryaj o o .. apr, where 1 <s <d—1, o} | # 21,
ap # xo and a; # o' if s # s'. These paths are disjoint and have length
p—h+1.

If k=p—1 (modp), then d(zx, x1) = 2 and there are exactly d paths of
length 2 from z; to x1. If 241 = %o, we consider the d — 1 paths of length 2

that avoid the vertex zq: the paths xka;xl, where 1 <s<d -1, a; # xo and
ap # ozzs,’ if s £ 5. If €441 # 2o, we can take only d—2 oflthese paths: the paths
zpayry, where 1 <s <d—2, ay # xo, 7141 and o, # a, if s # s'. In this case,
we have to consider also a path with length p + 2: xkxoaf_l .. .ag:%xk+1x1.

If £ =0 (modp), then d(zg,z1) = 1. In this case, we take d — 1 paths
of lengtlll p+ 1t wpaq...ayw, where 1 < s <d—1, af # xp41, o # xo and
af £al ifs#£ 5.

Then, we can construct d paths from x to y in BGC(p, d, d**1):

e A path of length 1, the arc A = zoz1 ... 252k 41-
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e d—1ord—2 paths with length D —h4+1< D41,

B3 B3 B3
Qs =ToT1. .. TpQp 1O 5. ST T T g1,

where k = h (modp) and 0 < h <p—1.
If K =p—1 (modp), we may need one path with length D + 2,

_ d—1 d—1
R==zox1...25x007 " .. N PERT SRR I Y J |

Proposition 3.4 If s £ t, the paths Qs and Q) are disjoint.

Proof: If q; ; is the j-th vertex of the path ;,

Tjooy ROy q - Oy j:l,...,p—h
Gsj = 8 Tjeo TpQpyq .. 01 . Tjprn J=p—h+1,....k
Ohyjgy e QT o Tjpth j=k+1,....,k+p—n~h

and, of course, we have the analogous expressions for the vertices of the path
();. We have to prove that ¢, ; # ¢ for any ¢,7 = 1,...,k+ p— h. By the
symmetry of the paths, it suffices to compare ¢, ; with ¢;; when j < i. The
case ¢ = j is trivial because af # ol for any r = h+1,..., p. Besides, since the
paths are in a p-cycle, it is only necessary to prove that ¢, ; # ¢;; when ¢ = j
(mod p) and i > j + p.

Let us suppose that there exist i, j, where ¢ = j (modp) and ¢ > j + p,
such that ¢, ; = ¢¢ ;.

fl1<j<p—handp—h+1<1i<k, we have that

. s s . t t R _ R
qu—l‘],...,l‘k,ah_l_l,...,ozh_l_j —$za---a$kaah+1a---aapa$1---a$z—p+h—Qt,z

Let us consider the subsequences formed by the vertices of C}, ® K7 in the partite
set Vi4;:

s . ol . .
Lhtjlhtptj -« Th—ptjQpqpj = Thti e - Lh—p+iQpyjThtj---Li—pth

Observe that h 4 j < p. We consider the equivalence relation digraph [48] given
by this equality. The arcs of the equivalence relation digraph join a symbol
appearing in the first sequence with the symbol that appears in the same place
in the second sequence. In this digraph, the vertices z, have in-degree and out
degree equal to one, «} | ; have in-degree 0 and out-degree 1 and O‘Z+j have in-
degree 1 and out-degree 0. Then, there exists in the equivalence relation digraph
a path from Qg to O‘Z+j' That means that Uhyi = O‘Z+jv a contradiction.

Ifp—h+1<j<i<k, we consider jo such that jo = j ={ (modp) and
0 < jo < p—1. From the equality ¢, ; = ¢ ;, we take the subsequences formed
by the vertices in the partite set V, of C}, @ K7j:

s — . . t .
Lidtp—jo-- .xk_hapxp e lj_jo—8 = Titp—jg - - .xk_hapxp e Lo

where £ = 0 if jo > p— h and £ = p otherwise. As before, using the equivalence

relation digraph, we obtain that a;, = a;, a contradiction.
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The remaining case, p—h+1<j<kand k+1<¢<k+p—h,issolved
analogously.O

The following propositions are proved in a similar way.
Proposition 3.5 The paths QQ; and R do not contain the arc A.
Proposition 3.6 The path R is disjoint with any path Q).

Therefore, we have constructed d disjoint paths between any pair of ad-
jacent vertices of BGC (p, d, d"+1):

one of length 1, d — 2 of length at most p+ k& + 1 and one of length at
most p+ k + 2.

Theorem 3.7 Let x, y be any pair of different vertices of the generalized cycle
BGC(p,d,d**1), p > 2. There exists a container from x to'y of width d and
length less than or equal to p+k+2 = D+2 composed by one path with minimum
length d(x,y), d— 2 with length at most D+ 1 and one of length at most D +2.

Proof: We are going to prove this theorem by induction on k. If £ = 0, the result
is true by Proposition 3.3. Let x, y be two different vertices of BGC (p, d, d"+1),
k > 1. We have proved the existence of these paths if d(x,y) = 1. Let us sup-
pose that d(x,y) > 2. Since BGC(p,d,d"*!) is isomorphic to the line digraph
LBGC(p,d,d"), we can put x = zoxy and y = yoy1, where zq, 1, yo and y;
are vertices of BGC(p,d,d*). Besides, z; # yo, because x is not adjacent to
y. Then, in BGC(p,d,d") there exists a container from z; to yo with width d
and length at most p 4+ k£ 4+ 1. In this container there are one path of length
d(z1,y0), d — 2 of length at most p+ k, one of length at most p+ &+ 1. These
paths induce in the line digraph LBGC(p,d, d*) = BGC(p,d,d**) a container
of width d from x = zgzy to y = yoy1, with one path of minimum length
d(x,y) =d(z1,y0) + 1, d — 2 of length at most p+ k+ 1= D + 1 and one path
of length at most p+ k+2= D4 2.0

As a corollary of Theorem 3.7 we obtain the values of the s-wide-diameter
and the s-fault-diameters of BGC(p,d,d**!). We can see that these values are
almost optimal by comparing them with the lower bounds given in Proposi-
tions 3.1 and 3.2. In effect, for any s = 2,...,d,

Dmin(«‘?,p, d, pdk-l—l) =D; (Sapa da pdk-l—l) =p+ k+1

Theorem 3.8 Let G be the generalized cycle BGC (p,d,d**1), p > 2. Then

=D(G)=p+k+1=D+1if2<s<d-1o0rs=4d and
<k<p-2

0

e dy(G)=DL(G)=p+k+2=D+2 ifk>p—1.

e d;(G) = D;(G) =p+k+1=D4+1if2<s<d—-1o0ors=d and
0<k<p-1.
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e dy(G)=Dy(G)=p+k+2=D+2 ifk>p.

Proof: Tt is obvious from Propositions 3.1 and 3.2 and Theorem 3.7 that d,(G) =
D,(G)=D(G)=p+k+1=D+1if 2 <s <d—1. The minimum value
of k for which we need a path with length D 4+ 2 (the path R) in order to
construct the d disjoint paths is k = p — 1. Then, D/(G) = D4_1(G) =D+ 1
if 0 <k < p— 2. Since in the digraph BGC(p,d,dP~!) there are containers of
width d and length at most p4+ k& —1 between any pair of different vertices, in the
digraph BGC(p,d,d*) = LBGC (p,d,dP~t) we can find a container of width d
and length at most p + k& between any pair of non-adjacent vertices. Therefore,
Dy(G) = D+ 1if k = p— 1. Finally, let us consider in BGC(p,d,dP) the
vertices X = xo1...2p_1 and y = &1...2p_12p, Where zg = (0,0) € Z, x Zg4
and z, = (0,d — 1). If we remove from BGC(p,d,d’) the d — 1 arcs e; =
Zoky .. .xp_la;,where a; = (0,4), 1 < i < d—1, the distance from x to y in
the resulting digraph will be equal to 2p + 1 = D 4 2. Using the line digraph
technique, it is not difficult to find, for any & > p — 1, d — 1 vertices or arcs to
be removed from BGC(p,d,d**!) in order to obtain a digraph with diameter
p+k+2. Therefore, D)) (G) = D+2ifk > p—1and Dg(G) =p+k+2=D+2
if k> p.0

3.3.2 The Kautz generalized cycles KGC(p,d,d*t" + d*)

Proceeding in the same way as in Section 3.3.1, first we find disjoint paths
between vertices in the digraph KGC'(p, d, d?+1), which is the smallest digraph
in this family. Next, we construct disjoint paths of bounded length between any
pair of adjacent vertices of KGC(p,d,d*t* 4 d*).

We recall now some properties in [40] of the generalized cycle
KGC(p,d,d? +1). If  and y are two different vertices in the same partite
set of KGC(p,d,d? + 1), then d(x,y) = p and there is only one shortest path
form x to y. Besides, there is no cycle of length p in this digraph. For any
vertex x there are exactly 1 +d+d? +...+dF vertices y such that d(z,y) < p.
That is, if d(#, y) < p there is only one path from # to y with length at most p.

Proposition 3.9 Let z, y be any pair of vertices of KGC(p,d,d? +1)). There
exists a container of width d from x to y with length at most 2p = D + 1.

Proof: We can suppose that © € Vo and y € Vp, where 1 < h < p. let
[t (z) = {z1,22,...,24} be the set of the vertices that are adjacent from z and
I~ (y) = {v1,v2,...,v4} be the set of vertices that are adjacent to y.

If h =1 and (z,y) is not an arc, Since there is a unique path of length
p from any z; to y, we have exactly d paths of length p 4+ 1 from z to y: the
paths zz; ...y, 1 <i < d. Using the properties of KGC(p,d,d? 4+ 1)), it is not
difficult to see that these paths are disjoint. If (x,y) is an arc, we can suppose
that z; = y. In this case, we have a path of length 1, the arc (#,y), and d — 1
paths of length p + 1: the paths xz; ...y, 2 <i < d. As before, these paths are
disjoint.
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If h > 2 and d(z, y) = h, we can suppose that the unique path of minimum
length from # to y has the form zz...v1y (where z4 = vy if h = 2). Let o
be any permutation in {2,...,d}. For any i = 2,...,d, let w; € V4_1 be any
vertex such that d(z;, w;) = h—2 and consider the path zz; ... w; ...vsy, which
is a path from z to y with length p 4+ h < 2p. Observe that, since w; # vy
if 2 < ¢ < d, there is a unique path of length p from w; to v,;. By the
properties of the generalized cycle KGC(p,d,d? + 1)), these d paths from z to
y are disjoint. If d(x,y) = p+ h or h = p and # = y, we can consider any
permutation ¢ in {1,2,...,d} and construct d paths from z to y with length
2p: the paths xz; ... w;...v5;y, where ¢ = 1,...,d and w; is a vertex in Vj_y
such that d(z;, w;) = h — 2. As before, these paths are disjoint.D

Let x and y be any pair of adjacent vertices of the generalized cycle
KGC(p,d,dP* + d*). As it was done in Section 3.3.1 for BGC(p,d,d**1), we
construct a container from x to y of width d and bounded length . Since that di-
graph is isomorphic to the iterated line digraph L* K GC(p,d, dF+1), its vertices
can be written as paths of length & in KGC(p,d,d? + 1). Then, we can write
X = xo®y...25 and y = 1 ...25%k41, Where 2;, 2 =0,1,...,k + 1 are vertices
of the generalized cycle KGC(p,d,dP + 1). We are going to find d — 1 disjoint
paths from x to y that do not contain the arc A = (x,y). These paths are going
to be to be constructed from disjoint paths from zy to z1 in KGC(p,d,d? 4+ 1)
and will have the form zox1...2x05 110842 .. - Qpyr®1 ... TxTry1, Where r < 2p,
ak41 7 41 and agyr # xo. Therefore, we must find in KGC(p,d,d? + 1) a
container C'(xy,z1) with width d — 1 and length at most 2p+ 1 such that their
first and last arcs must be, respectively, different from (zx, #x4+1) and (zo, 21).

Lemma 3.10 Let # and y be two vertices of KGC(p,d,d? + 1) such that
d(z,y) Z 1 (modp). Let us consider = € It (x) and v € T~ (y). Then, there
exists a container of width d — 1 and length at most 2p, avoiding the arcs (x, z)
and (v,y).

Proof: We can suppose that © € Vp and y € Vj,, where 2 < h < p. If d(z,y) = h,
let zz1...v1y be the unique shortest path from z to y (if h = 2, then z; = vy).
We have to distinguish three cases.

Case 1: h=pand z = y; or d(x,y) =p+h;ord(z,y) =h, 2 =z and v = vy;
or d(z,y) = h, z # z1 and v # v1. By the proof of Proposition 3.9, we can
find in this case a set of d disjoint paths from z to y with length at most 2p
containing a path in the form zz...vy. The other d — 1 paths are the paths we
are looking for.

Case 2: d(z,y) = h, z = z; and v # vy. Let us consider a vertex zz €
['*(z), 22 # z and a vertex u € V; such that u # z; and d(u,v1) = h — 1.
Then, u ¢ Tt(x) and there is a path with length p from z3 to u. Let us
consider the following d — 1 paths with length p + A from z to y: the path
zzy...%...v1y,and the paths xz; ... w; ... v5y, 3 <12 <d, constructed as in the
proof of Proposition 3.9, where v,; # v. It is not difficult to prove that these
paths are disjoint and do not contain neither the vertex z nor the vertex v.
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Case 3: d(x,y) = h, z # z1 and v = vy. This case is analogous to Case 2.0

Lemma 3.11 Let # and y be two vertices of KGC(p,d,d? + 1) such that
d(z,y) = 1 (modp). Let us consider = € It (z) and v € T~ (y). Then, there
exists a container of width d —1 and length at most 2p+ 1 from x to y such that
all the paths in it have their first and last arcs are, respectively, different from
(z,z) and (v,y). Besides, at most one of the paths in the container have length
2p+ 1.

Proof: We can suppose that z € Vy and y € V1. As we have seen in the proof of
Proposition 3.9, there are exactly d paths, which are disjoint, of length at most
p—+ 1 from z to y.

Case 1: d(z,v) =p—1l,orz =vand y = z. If d(z,v) = p—1, the path zz ... vy
is one of the d disjoint paths from x to y with length at most p+ 1. The other
d — 1 paths are disjoint and avoid the arcs (z, z) and (v,y). If z = v and y = =,
the two forbidden arcs are equal to (#,y). The other d — 1 paths with length
p+ 1 from z to y are the paths we are looking for.

Case 2: d(z,v) =2p— 1, 2 # v and y # z. In this case, there are two different
paths from z to y with length p 4+ 1 containing one of the forbidden arcs: the
paths zz...v'y and zz’...vy. Then, there are d — 2 paths from x to y with
length at most p + 1 avoiding the arcs (z,z) and (v,y). Let w € Vo, w # v, be
a vertex such that d(z’,w) = p— 1. Then, w ¢ T (y) and there exists a path
of length p from w to v'. The path zz'...w...v'y, which has length 2p + 1, is
disjoint with the above d — 2 paths and do not contain neither z nor v.

Case 3: (»,y) is an arc, + = v and y # z. Then, the d paths from z to y with
length at most p+ 1 are: the arc (z,y), the path zz...v'y and d — 2 paths with
length p+ 1 that do not contain any of the forbidden arcs. Let w € Vi, w # z,
be a vertex such that d(w,v’) = p— 1. Then, w ¢ I't(z) and there is a path
with length p from y to w. The path zy...w...v'y, which has length 2p + 1,
is disjoint with the other d — 2 paths, its first arc is different from (z, z) and its
last arc is different (v, y).

Case 4: (x,y) is an arc, # # v and y = z. Analogously to Case 3, we have d — 2
paths with length p+ 1 that do not contain any of the forbidden arcs. Let 2z’ be
the vertex such that #z’...vy is a path of length p+ 1. Let w € Vo, w # v, be
a vertex such that d(z’,w) = p— 1. Then, w ¢ T (y) and there is a path with
length p from w to x. The path zz’...w...zy, which has length 2p + 1, and
the above d — 2 paths are the paths we are looking for.O

Let x = zox1... 25 andy = 21 ... 22541 be any pair of adjacent vertices
of the generalized cycle KGC(p,d,d*t* + d*). Let h be the integer such that
h =k (modp) and 1 < kA < p. By Lemmas 3.10 and 3.11, there exist a container
Cag,21) in KGC(p,d,d? 4+ 1) with width d — 1 and length at most 2p+ 1 such
that every path in the container has the first and the last arcs are, respectively,
different from (zg, x41) and (zo,x1). Using these paths, we construct d — 1
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paths from x to y with length at most 2p+ &k + 1 = D + 2. By doing that, we
have obtained d paths from x to y that will be proved to be disjoint. The first
of these paths is the arc

A= (x,y) = xo®1... 05Tk 41
There can be one path with length k+p—-h4+1<D—p+1,
P = xoxl...xka,ll_l_la,ll_m...a;xl...xkxk+1,
d—1,d—2ord— 3 paths with length k+2p—h+1< D41,

_ s s s s
Qs = ToT1... TpQh 1 Opys - SO QST TR TR,

and, if h = p, we may need one path with length D + 2,

_ d—1 d—1 d—1
R==zox1...2507 S SRR Y SR p

It can be proved that these paths are disjoint by using the same techniques as in
Section 3.3.1. The proof of the following theorem is the same as in Theorem 3.7

Theorem 3.12 Let x, y be any pair of different vertices of the generalized cycle
KGC(p,d,dPT* +d*), p > 2. There exists a container from x to y with width d
and length less than or equal to 2p+k+1 = D+2. Moreover, in such container
there is one path with minimum length d(x,y), and there are d — 2 paths with
length at most D + 1 and one of length at most D + 2. O

As a corollary of Theorem 3.12 we obtain the value of the s-wide-diameter
ds(G), and the s-fault-diameters D, (G), D.(G) for G = KGC(p,d,dP+* 4 d*).

The following theorem can be proved in the same way as Theorem 3.8.

Theorem 3.13 Let G be the generalized cycle KGC(p,d,d?t* + d*), p > 2.
Then

e d;(G) =DG) =2p+k=D+1if2<s<d-1ors=4dand
0<k<p-1.

e dy(G) =D\(G)=2p+k+1=D+2ifk>p.

e d;(G)=D;(G)=2p+k=D+1if2<s<d-1lors=dand 0 < k <p.

o dy(G) = Da(G)=2p+k+1=D+2ifk>p+1.

Again, the bounds obtained are almost optimal by comparing them with
the lower ones given in Propositions 3.1 and 3.2. In effect, for any s =2,...,d,

Dmin (s, p, d, p(d®PTF 4+ d¥)) = D}y (s, pyd, p(dP ™5 +d¥)) = 2p + k.
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3.4 Fault-tolerant routings

Using the containers constructed in Sections 3.3.1 and 3.3.2, routing algorithms
for BGC(p,d,d*) and KGC(p,d,dPt*+d*) are respectively given. We avoid de-
tails of such algorithms that depend on the implementation of the network [21],
to focus on possibilities to make use of the containers. [27]

We assume that before the routing algorithms, other algorithms were
running on the network. These algorithms recognize the faulty elements (nodes
and links), giving a list of them as output. Note that this is not a restriction
since is the most common way in which routers work when no acknowledge
messages are sent [59].

3.5 The De Bruijn generalized cycles
Let u, v be any two vertices of the BGC (p, d, d"t1), let say,
U= (Cla"'707‘7a07a17"'7ak—7‘)7 v = (a07a17"'7ak—7‘7b17"'7b7‘)

with all their coefficients in C}, ® Kc‘l", and r the distance from u to v.
If » = 1 we just have a description of the minimum length paths from
to v. Otherwise, we consider vertices u’ and v’ in BGC(p, d,d"~"),

u = (Cla ag, a1, . - '7ak—7')
v = (a07 AlyeeeyQf—p, br)

with all coefficients in C}, & Kc‘l".
Now d(u',v') = 1, so we know paths from u' to v’ and can go from u to v by
the paths from v’ to v'.

Then, a brief description of the routing algorithm could be:

Input: u,v vertices in BGC(p,d,d**1)
e Calculate r, the distance from u to v.

e If » = 1 choose the path of minimum length not intersecting the list of
faulty nodes.

o If r £ 1 take u’,v’ as above. Construct paths between u’ and v’ and
extend them to go from u to v. Choose the one of minimum length from
the paths which does not have any faulty element.

To calculate the distance between the input vertices, the most natural
way is to compare the corresponding sequences to have:

r=d(u,v)
UZ=ClyeeesCryllye.sQi—r4]
U:ala"'aak—r+1ab17"'abr

Knowing the distance, we know also d disjoint paths from u to v. In fact, if they
are adjacent, we have a direct description of them. If not, we take two adjacent
vertices:
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r_

U =CpryQry.e.yQk—r41
[ —

v —ala"'aak—r+1ab1

and from paths between them, arise the ones we want.

At this point, we have to choose a path of minimum length in the above
set which does not contain neither a faulty node nor a faulty arc. We can do
it in several ways. A first idea could be to construct all paths by increasing or-
der of length, and start with the shortest until we find one with the conditions
desired. Another option could be to compare the nodes and arcs of each path
with the faulty ones during its construction. That is, could be not necessary to
construct the whole container. So, we construct one path, check the conditions,
and only if it is necessary, we proceed constructing another one. Also, we can
improve this idea, checking the conditions during the construction. That is, in
the precise moment we add a node -and obviously an arc- we check that it is
not a faulty one. If there are no other alternative, we discard this construction
and start with another one. Naturally, we should start trying with paths in
increasing order of length.

Ezxample: Let d =7, p=4 and k = 5. We want a path from u to v, vertices of
BGC(4,7,117.649) = L5(Cy @ KT), with:

w=(3,1)(4,6)(1,3)(2,0)(3,2)(4,6),0 = (L, 3)(2,0)(3,2)(4, 6)(L, 1)(2,3)

Since d(u, v) = 2, the path must be constructed recursively from other between
vertices at distance 1. Let:

= (4,6)(1,3)(2,0)(3,2)(4,6), v" = (1,3)(2,0)(3,2)(4,6)(1,1)
Now, d(u',v") = 1, so we already know 7 paths from «’ to v’:
e The arc (v/,v'):
[(4,6)(1,3)(2,0)(3,2)(4,6)(1,1)]

e Paths based on others from (4, 6) to (1, 3):

[(4,6)(1, 3)];
[(4,6)(1,a3)(2,a3)(3, af) (4, a4)(1, 3)], with af # 1,3 and of # 6.

These paths give rise to:

[(4,6)(1,3)(
[/ (1,01)(2,03)

From these 7 paths from «’ to v’, by recursion we obtain the following 7 from u
to v:

o [(3,1)(4,6)(1,3)(2,0)(3,2)(4,6)(1, 1)(2,3)]

;0)(3,2)(4,6)(1, 3)(2,0)(3,2) (4, 6)(1, 1]
3, a%)(4, af)v’], with algél 3 and oz4;é6

25



o [(3,1)(4,6)(1,3)(2,0)(3,2)(4,6)(1,3)(2,0)(3,2)(4,6)(1,1)(2, 3)]
o [u(l,a3)(2,08)(3,a5)(4, af)v], with of = 1,...,5, ] # 1,3, aj # 6 and
af £atifs#£t

Now, we have constructed d paths from u to v, and it only remains to
select one of minimum (or minimal) length not containing faulty elements.

Let F be the set of faulty nodes and L the set of faulty links. For example,
consider F' and F respectively:

{(2,0)(3,2)(4, 6)(1, 3)(2,0)(3, 2), (4,5)(1,4)(2, 0)(3, 2) (4, 5) (1, 3) }.
{(3.1)(4.6)(1,3)(2,0)(3.2)(4,6) 1.

The algorithm discards the first two paths and one of the third class.
Now, if F' and E are respectively:

{(2,1)(3,2)(4,3)(1,5)(2,0)(3
{(2,0)(3,2)(4,6)(1, 3)(2,0)(3,2)(4, 6 »1)(2:3)}

The algorithm discards the second path and one or two of the third class.

3.5.1 The Kautz generalized cycles
Let u,v be any two vertices of KGC (p, d, d?T* + d*), let say,

U= (Cla"'7craa07a17"'7ak—7‘)
v = (a07a17"'7ak—7‘7b17"'7b7')

with all their coefficients in K GC(p,d,d’*!) and r the distance from u to v.
If » = 1 we just have a description of the minimum length paths from
to v. Otherwise, we consider vertices u’ and v’ in KGC(p, d, dPT* + d*):

u = (Cla ag, a1, . - '7ak—7')
v = (a07 AlyeeeyQf—p, br)

with their all coefficients in KGC'(p, d, dP+1).

Now, d(«',v') = 1 and we know the paths from «’ to v’. These allow us
to go from u to v.

A short description of the routing algorithm could be:

Input u,v in KGC(p,d,dPt* + d*):
e Calculate r, the distance from u to v.

e If » = 1 choose the path of minimum length which does not intersect the
list of faulty nodes.

o If » # 1 find vertices u', v’ as above. Construct paths between u’ and v’
and extend them to paths from u to v. Choose one of minimum length
which does not intersect the list of faulty nodes.
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That is, the routing strategy is the same that for BGC(p, d, d¥).

Ezxample: Let take d = 4, p =5 and k = 6. We want a path from u to v, vertices
of KGC(5,4,1025) = L*(Cs © GK (4,1025)), with:

u = (5,77)(1,715)(2, 814) (3, 182)(4, 297) (5, 170)(1, 681)
v = (3,182)(4,297)(5, 170)(1, 681)(2, 860)(3, 660) (4, 435)

Since d(u,v) = 3, we have to construct the paths recursively, from paths
between vertices at distance 1. So, we determine:

w' = (2,814)(3,182)(4, 297) (5, 170)(1, 681)
v = (3,182)(4,297)(5, 170)(1, 681)(2, 860)

Now, d(u',v") = 1 and applying the base construction, we obtain 5 paths
from v’ to v':

e The arc (v/,v'):

[(2,814)(3, 182) (4, 297) (5, 170) (1, 681)(2, 860)]

e Paths from others between (1,681) and (3, 182):
[(1,681)(2,8") (3,8 (4, a3) (5, 08"} (1, a7 (2, a°) (3, 182))
giving rise to:

[W(2,051) (3, a5") (4, a3 (5, a5 ) (1, a7) (2, a5)']

From these paths from u’ to v’, by recursion we obtain the following ones
from u to v:

e If ((1,681),(2,860)),((2,814), (3, 182)) are in the same path, we discard it.

o If ((1,681),(2,860)),((2,814), (3,182)) are in different paths, we discard
both, and add the path obtaining by replacing the arc ((1,681), (2, 860))
by a cycle of length p, in the path that contain it.

[1(2, a5) (3, a3) (4, @4) (5, a5) (1, 01) (2, 860)(3, @3") (4, @) (5, @31) (1, @17) (2, @3]

Now, there are d paths from u to v, and it only remains to select the one
of minimum (or minimal) length without faulty elements.
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4 Fault-diameter of iterated line digraphs

4.1 Introduction

The fault-diameters digraphs were considered in [5, 9]. For the case of general
iterated line digraphs there are particular studies. The best known result was
proved in [53]. It says that, if an iterated line digraph L*G has maximum
connectivity, its fault-diameter is bounded by D(L*G) + C, where C' depends
on some properties of the digraph G, but does not depend on the number of
iterations k.

Here we introduce two parameters in order to find new bounds on the
fault-diameters of iterated line digraphs. The bounds presented here, are not
only in general tighter than the ones given in [53]. They also improve some
other aspects. First of all, they do not need L*G to be maximally connected
to be applied. Besides, instead of dealing only with the worst case, that is,
when the number of faulty elements is just one unit less than the connectivity,
our bounds depend on the number of faulty elements. Finally, the bounds
given in [53] can take different values when they are calculated for H; = L*G
or for Hy = Lkl(Lk_le), being these two digraphs isomorphic. The bounds
here avoid this problem. Also for some digraphs, their values are shown to be
optimal.

4.2 Preliminaries

Let  and y be two different vertices of a digraph . If the shortest path from
z to y is unique, it will be denoted by z — y. Its first vertex after = will be
v(z = f) and its last one before y will be v(y < #). Now, if F' is a set of vertices
of Gand z ¢ I, v(x — F) is the set formed by v(z — f) for every vertex of
f € F, such that the shortest path from x to f is unique, and v(z « F) is
defined analogously. When z is a vertex and e = (u, v) is an arc such that the
shortest path from # to u is unique, we denote by a(z — e) its first arc. If
r=u, a(xr = e) = e. Also a(x + €) is the last arc of the unique shortest path
from v to x. If # = v, a(x <€) = e. If F is a set of arcs of ¢, we define as
before the sets a(z — F) and a(x + F).

In [23] Fiol and Fabrega introduced the following parameter: for a di-
graph G with minimum degree d and diameter D, £ = £(G) is the greatest
integer, 1 < ¢ < D, such that, for any z,y € V(G),

a) if d(»,y) < ¢, the shortest # — y path is unique and there are no paths of
length d(xz,y) + 1;

b) if d(x,y) = ¢, there is only one shortest z — y path.

In [23] it was also proved that if x and A denote respectively the vertex
and arc-connectivity of ¢, then they are maximum where the diameter D is
D <2l —1and D < 2, respectively.

28



The parameter £ was used in [53] to study the fault-diameters of maxi-
mally connected loopless digraphs. For the same purpose but for digraphs with
loops, they introduced a variation of this parameter, £7 as following: for a di-
graph G with diameter D, 5 = £5(G) is the greatest integer, 1 < {5 < D,
such that, for any z,y € V(G),there exist two unique vertices z* € 't (z),y~ €
I'~(y), not necessarily different, such that

a) if d(xz,y) < £7, the shortest  — y path is unique and if there exists a path
of length d(z, y)+1, it is unique and its first and last arcs are, respectively,
(z,2%) and (y~, y);

b) if d(x,y) = ¢;, there is only one shortest x — y path.

Making use of the above parameters, in [53] the following two results for
fault-diameters were presented.
Let G be a digraph with minimum degree d > 2, diameter D = D(G)
and £ = ¢(G). Then,
e D,(L*G)< D(L*G)+C,ifk>D—20+1
e DI(LFG) < D(L*G)+ C,if k> D —2(
fors=1,...,d — 1, where C' = max{D + 1,2(D — {)}.
If G is a loopless digraph with minimum degree d > 2 diameter D = D(G)
and £ = £3(G). Then,

)-

Dy(L*G) < D(I*FG)+ C,if k> D —2L11+1
D(L*G) <
fors=1,...,d — 1, where C'= max{D + 1,2(D — ) }.

( )—|—C lfk>D—2L11

4.3 Parameters L., y M.,

This section is devoted to the introduction of some new parameters and their
main properties, together with some notation for the following. We begin in-
troducing the parameter L. ,, which will allow us to stablish bounds according
to the number of faulty elements. While doing it, we present the notation
<I>;'T'T, @, that will be helpful in the next.

Let G be a digraph with minimum degree d > 2 and diameter D = D(G).
Let 7 be an integer, 0 < m < d — 2. For any positive integer r we define
Ly, = L, (G) as the greatest integer, 0 < L, , < D, such that for each vertex «
there exist sets ®F, () C [* (2,5 (&) C [ (2), with [0F, (2)], |95, ()] < m,

satisfying:

1. ifd(z,y) < Lrr, there is only one shortest path from z to y and any other
path with length lesser than or equal to d(x,y) + r has its first vertex in
®F () and its last one in & . (y).

2. ifd(z,y) = Ly, the shortest path from z to y is unique.
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This parameter is a generalization of the parameters £y [23] and ¢] [53].

In fact, Lo 1(G) = €o(G) and Lq,1(G) = £ (G).

Proposition 4.1 Let GG be a digraph with minimum degree d > 2. Let w be an
integer with 0 < m < d—2 and r a positive integer such that L, = L ,(G) > 1.
Then, for any positive integer k, Ly, (L*G) = Ly .(G) + k.

Proof: As L*(G) = LL*~G, it is enough to consider the case k = 1. Let
x = zox1 and y = yoy1 be two different vertices of LG. If dra(x,y) < L., (G)+
1, then da(z1,y0) < Lxr(G) and there is in G only one shortest path from
z1 to yo. Therefore, in LG, the shortest path from x to y is unique. Let
us consider ®F (x1) = {wi,...,w,} and @7 (yo) = {u1,...,u}, where 1 <
s,t < o drg(x,y) < Lzr(G) + 1, then da(x1,90) < Lry(G) and any
non-shortest path from z; to yo with length at most d(z1, yo) + r has its first
vertex in <I>+ (71) and its last one in @ (yo). Therefore, all non-shortest
paths from X to y with length at most d(x,y) + r have their first vertices in
o, (x) = {z1w1,...,x1w;} and their last ones in & (y) = {v1yo,- .-, utyo}-
If x =y = xox1, and there is a cycle xx1...xp_1x with length & < r, then,
there is a cycle C' = woz122...2p_120 in the digraph G. Since L. ,.(G) > 1,
we have that x4 € <I>;'T"T(x1) and z,_1 € @;7T($0). Then, x; = z1x2, which
is the first vertex after x in the cycle (', is in <I>jr"r(x), and the last vertex
of the cycle is x3_1 = xp_129 € <I>;7T(x). Therefore, we have proved that
Ly, (LG) > Ly (G)+ 1.

On the other hand, since d > 2, for any two vertices z1,yo of G there
exist vertices xq,y; of G such that x = zgx; and y = yoy; are vertices of LG
with d(x,y) = d(21,y0) + 1. Then, it is not difficult to prove that L, ,(G) >
L,,(LG)—-1.0

Lemma 4.2 Let G be a digraph with minimum degree d > 2, and L, =
Ly, (G) for an integer m with 0 < © < d — 2 and a positive integer r. If
z,y are two vertices of G, then

(a) if d(z,y) < Lr,: for all 1 € TT(z )q)jr"r(x) such that @1 # v(x — y),
(J:l,y) >d(x ,y)—l—r forallyy € U™ (y)—@7 . (y) such that y1 # v(y + z),
(7y1)2d(7y)+r

(b) zfd( wrs Jor all zy € TT(2){v(z — y)}, d(z1,y) > Lr; for all

y)=1L
I (y) = {oly < @)}, d(@,91) 2 Lar

Proof: It d(z,y) < Ly, 21 ¢ <I>;'T"T(x) and x1 # v(x — y), then, the length of
any path xz; — y is greater than d(z, y) + r. Therefore, d(z1,y) > d(z,y) + r.
In the same way, d(z,y1) > d(z,y) + r.

If d(x,y) = Lr,, the shortest path from « to y is unique. A shortest path
from #1 # v(x — y) to y determines a path from z to y. Then, d(z1,y) + 1 >
d(z,y) +1= L, + 1. Analogously, d(z,y1) > Ly,. O

Iterating the application of the Lemma 4.2 we obtain the following:
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Lemma 4.3 Let G be a digraph with minimum degree d > 2, and L, =
Ly, (G) for an integer m with 0 < 7 < d — 2 and a positive integer r. Let
F be a set of vertices of G, 1 < |F| < d— 7 —1, and z,y two vertices of G,
z,y ¢ F. Then, for every m > 1:

(a) there exists a path xxy ...xy, such that for all f € F:
d(zi, f) > min{d(z, f) + rm, L, };

(b) there exists a path ym, ...y1y such that for all f € F:
d(fa yz) Z Hlln{d(f, y) + rm, Lﬂ',r}- O

Let G be a digraph with minimum degree d > 2. Let 7 be an integer with
0 <7 <d-—2and r a positive integer such that L, ,(G) > 1. A (w,r)-double
detour is a set of four paths {Cy, CY, C2, C4} such that

e (1 and C] are paths from « to f, with lengths s and ', respectively, where
s > sand s’ > 1. (3 and CY} are paths from f to y, with lengths ¢ and ¢’,
respectively, where ¢’ > s and ¢’ > 1. Besides, max{s, ¢} > 1.

o If (z,2'1) is the first arc of C7, then #} ¢ ®F (). If s # 0 and (x, ;) is
the first arc of Cy, then @ # ;.

e If (¥}, y) is the last arc of (5, then yy ¢ @ (y) . If ¢ # 0 and (y1,y) is
the last arc of Cy, then ] # ;.

The length of a (w,r)-double detour is defined to be s’ + . We define M, , =
M ;(G) as the minimum length of a («, r)-double detour of G.

It is not difficult to check that, for any digraph G, M1 1(G) > 4 and
Mo, > 4 if G is loopless.

Proposition 4.4 Let GG be a digraph with minimum degree d > 2. Let w be an
integer with 0 < 7 < d—2 and r a positive integer such that Ly ,(G) > 1. Then,
for any positive integer k, My ,(L*G) = M, ,(G) + k.

Proof: As before, it is enough to prove the proposition for & = 1. Let
{C1,C,C2,Ch} be a (m,r)-double detour in LG with length s’ 4+ ¢/, where
(1 and (7 are paths from x = zoz1 to £ = fof1 and Cy and C% are paths from
f=/fofi toy =yoy1. If 5,4 > 1, it is not difficult to prove that there exist a
(7, r)-double detour in G with length s’ +¢ — 1. This double detour consists in
two paths from z1 to fp and two paths from fo to yo.

Now, we assume that s = 0 and ¢ > 1, that is, x = f = fofi. In this
case, we can find a (m, r)-double detour {Cy, C{, C2,C,} in the digraph G, where
C1 and Cf are paths from f; to fi with lengths s = 0 and s’, respectively, and
Cs and C4 are paths from fy to yo with lengths ¢ — 1 and ¢’ — 1, respectively.

Therefore, if there is a (m, r)-double detour in LG with length s' + ¢/,
then there exists a (m,r)-double detour in G with length s’ +¢ — 1. On the
other hand, for any (7, r)-double detour in G with length h, it is easy to find a
(7, r)-double detour in LG with length h + 1.0
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Lemma 4.5 Let G be a digraph with minimum degree d > 2. Lel m and r be
two integers with 0 < 7 < d —2, and My, = M, ,(G). Let z,y, f be any three

vertices. If x1 € T (x) —<I>;|T'7T(l‘),l‘1 Fo(z—f)andy € I (y) -7, (y),31 #
v(y « f), then d(zq, ) +d(f, 1) > My, — 2.

Proof: Since 21 ¢ <I>;'T'7T(x),x1 #v(z — f)and y1 ¢ 7, (y),y1 # v(y < f), we
can consider a (m,r)-double detour in G with Cy the shortest path from z to
f, C3 the shortest path from f to y, C} = zxy — f and C} = f — y1y. Then,
Mﬂ',r(G) S d($17 f) + d(fa yl) + 27 and d($17 f) + d(fa yl) Z Mﬂ',r —-2. 0

The following result can be proved analogously.

Lemma 4.6 Let G be a digraph with minimum degree d > 2. Let m and r
be two integers with 0 < m# < d — 2, and My, = M, ,.(G). Let z,y be two
vertices and (f,g) an arc. If v1 € TT(z) — <I>;'T'7T(x),x1 #o(r = f) and yy €
F_(y) - @;,r(y);yl ;é U(y — g)) then d($17 f) + d(ga yl) Z Mﬂ',r - 3 O

4.4 New bounds

In this section we present upper bounds for both, vertex and arc-fault-diameters
of iterated line digraphs, making use of the results of Section 4.3.

Theorem 4.7 Let G be a digraph with minimum degree d > 2, diameter D =
D(G), and parameters My, = My,(G), Lz, = Lr,(G) for an integer m,
0 <7 <d-2 and a positive integer r. If D < 2L, — 1, the (s — 1)-vertex-
fault-diameter of G is

D.(G) < D(G) + C

Jors=1,....d— 7 with C = max{ {D_M"’;-I_S-I_w—‘ , P(D_TL’”)—‘ 1.

Proof: Let F be a non-empty set of faulty vertices of G, |[F| = s < d—m—1. Let
z,y be two different vertices of GG which are not in F. As |F| < d—m— 1, there
exist #1 in I't(z) — ®F (2) —v(x = F) and y1 in I~ (y) — @5 . (y) —v(y « F).
From Lemma 4.5, d(z1, f) + d(f,y1) > My, — 2, for all f € F. By Lemma
4.2: d(z1, f) > d(z, f) + 7 or d(z1, f) > Lr (L G) and d(f,y1) > d(f,y) +r or
d(f,yn) > Ly, (G), forall f € F. Also,as D < 2L, ,—1: 2L, ,.(G) > D+1. By
Lemma 4.3, there exist paths xq1ag...2, and y, ...y2y1 with @;,y; ¢ F, such
that d(zpm, f) > min{d(z1, f) + 7(m — 1), Ly, } and d(f, y») > min{d(f,y1) +
r(n — 1), Ly}, forall f € F. Now, if (m+n)r > D — M;, + 3+ 2r and
mr,nr > D — Ly, in any case we have d(zn, f) + d(f,y,) > D+ 1= D+ L
Then, a shortest path from z, to y, (with length at most D + k) does not
contain any vertex of F. Therefore, we have found a path from z to y with
length at most D + m + n avoiding F. Considering m and n such that m+n =

max{ [D_M”’r+3+2r—‘ , [Z(D_TL’”)—‘} we obtain the desired bound.O

r

For iterated line digraphs, using Proposition 4.4 and 4.1, we can state the
following:
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Corollary 4.8 Let G be a digraph with minimum degree d > 2, diameter D =
D(G), and parameters My, = My (G), Lxr = Lz, (G) for an integer 7, 0 <
7 < d—2 and a positive integer r. For any integer k, such that k > D—2L, .41,
the (s — 1)-vertez-fault-diameter of L*G is

D,(L*G) < D(LFG) + C

Jors=1,....d— 7 with C = max{ {D_M”’r+3+2r—‘ , P(D_L’”)—‘ }. O

r r

Making use of Lemma 4.6 instead of 4.5, we obtain:

Theorem 4.9 Let G be a digraph with minimum degree d > 2, diameter D =
D(G), and parameters My, = My,(G), Lz, = Lr,(G) for an integer m,
0 <7< d-2 and a positive integer r. If D < 2L, ,, the (s — 1)-arc-fault-
diameter of G is

D/(G) < D(G) +C

Jors=1,....d— 7 with C = max{ {D_M"’"I'S-I'w—‘ , P(D_TL’”)—‘ 1.0

r

Corollary 4.10 Let G be a digraph with minimum degree d > 2, diameler
D = D(G), and parameters My, = My ,(G), Ly, = Lz (G) for an integer
m, 0 < 7w <d-—2 and a positive inleger r. For any integer k, such that k >
D — 2L, ., the (s — 1)-arc-fault-diameter of L*G is

D(LFG) < D(IFG)+ C

Jors=1,....d— 7 with C = max{ {D_M"’"I'S-I'w—‘ , P(D_TL’”)—‘ 1.0

r

Theorems 4.1 and 4.2 in [53] are a consequence of the following corollary,
which is proved by taking # = 1 and » = 1 in the previous theorems

Corollary 4.11 Let G be a digraph with minimum degree d > 2, diameter
D= D(G) and ET = L171 = Ll,l(G)- Then,

e DJ(LFG)< D(L*G)+C, ifk>D—2L; ;1 + 1
e DI(LFG) < D(I*G)+C, if k> D —2L1 ;4
fors=1,...,d—1, where C =max{D — M11+5,2(D—Ly1)}. O
If we take # = 0 and r» = 1, we obtain the following result, from which
Theorems 3.1 and 3.2 in [53] follow.

Corollary 4.12 Let G be a digraph without loops and with minimum degree
d > 2, diameter D = D(G) and £o = Lo = Lo1(G). Then,

o D,(I*G) < D(L*G)+ C, if k> D —2Loq + 1
e DI(LFG) < D(I*G)+C, if k> D —2Lg;
fors=1,...,d where C = max{D — Mo1 +5,2(D — Lo1)}.0
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4.5 Applications

Since BGC (p,d,dPt* +d*) = L*(C, ® K}), we can apply the bounds obtained
to this family.
First, let us see the values obtained from the bounds in [53]. There it

was proved that for a digraph G with minimum degree d > 2, diameter D and
L =1G),

e D,(L*G)< D(LFG)+C,ifk>D —20+41;
e DI(LFG) < D(L*G)+ C,if k> D — 2¢.
where C' = max{D + 1,2(D — {)} for any s = 2,...,d.

The digraph C, ® K, has diameter D = p [40] and parameter ¢ = 1 if
p > 1 (it is easy to obtain from [40]). With these values, the bound arising from
the results in [53] is:
C' = max{2p,2(p— 1)} = 2p.
The results in Section 4.4 state that if G' is a digraph with minimum
degree d > 2, diameter D, and My, = My ,(G), Lry = Ly ,(G) for an integer
7, 0 <7 <d— 2 and a positive integer r.

e DJ(LFG)< D(L*G)+C,ifk>D 2L, +1;
e DI(LFG)< D(L*G)+ C,if k> D — 2L, ,.

r r

where C' = max{ {D_M"’T-I_S-I_ZT—‘ , [Z(D_L"’r)—‘} fors=1,...,d—m.

The values of the parameters M, and L, are simple to calculate for
Cp @ Kj when m = 0 and » = p — 1. In fact, from some properties presented
in [40] and in Section 3.3.1, it can be easily stated the following proposition.

Proposition 4.13 For any positive integer p and any integer d > 2,
M07p_1(cp ® I(;;) =4 and L07p_1(C'p ® I(;;) =1.0

With these values,

= [P0 ] 2= D),

for s =2,...,d.

These bounds hold for example, for the directed butterfly Bg(p) =
BGC(2,d,dP), where no results were known.

In Section 3.3.1 it was proved the existence of a container of width d
and maximum length D + 2 between any two vertices of the generalized cycles
BGC(p,d,d"t1). So, the general bounds obtained exceed in one unit the exact
value for the family of digraphs BGC (p, d, d*+1).

34



Also KGC(p,d,d*** + d*) = I* KGC(p,d,d” + 1) and we can apply the
bounds obtained to this family.

Let us see previously, the values obtained from the bounds in [53].

The digraph KGC(p,d,d? + 1), has diameter D = 2p — 1 [40] and pa-
rameter £ = p if p > 1 (it is easy to obtain from [40]). With these values, the
bound arising from the results in [53] is:

C'=max{2p,2(2p—1-p)} =2p

for any s = 2,...,d.
Instead, by the results in Section 4.4,

— My, +3+ ﬂ ’ [2(D - Lm)b

r

¢ = max{ | 2

-
fors=2,...,d — .

The values of the parameters M, and L, are simple to calculate for
KGC(p,d,d? + 1) when 7 = 0 and r = p — 1. In fact, from some properties

presented in [40] and in Section 3.3.2, it can be easily stated the following
proposition.

Proposition 4.14 For any positive integer p and any integer d > 2,
Mo ,p_1(KGC(p,d,d? + 1)) =2p+ 2 and Lo p_1(KGC(p,d,d" + 1)) = p. O
With these values,

p—1-2p—24+3+2(p—1)] [2(2p—1—0p)
P pp_l p W’[ pp_lpw}ZQ

¢ = max{|

for s =2,...,d.

These bounds coincide with the exact values given in [54] for the fault-
diameters of the bipartite digraphs BD(d, n), where it was proved the existence
of a container of width d and maximum length D + 2 between any two vertices.
We recall that KGC(2,d,d*t* 4+ d*) = BD(2, dPT* + d*).

Also in Section 3.3.2 it was proved the existence of a container of width d
and maximum length D + 2 between any two vertices of the generalized cycles
KGC(p,d,dP* 4+ d¥).

As a conclusion, the general bounds obtained are optimal for the families
of digraphs BD(d, n) and more generally, the KGC (p, d, d?* + d*).

5 Connectivity and fault-tolerance of hyperdi-
graphs
5.1 Introduction

Some results about the fault-tolerance of bus interconnection networks modeled
by directed hypergraphs are presented in this section. In particular, we study
the connectivities and fault-diameters of hyperdigraphs.
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The main results we present in this section are related to the fault-
tolerance of iterated line hyperdigraphs. We prove that, for any hyperdigraph H,
the iterated line digraph L* H is maximally connected if the number of iterations
k is large enough. That generalizes the results in [23] about the connectivity of
iterated line digraphs.

The results in [53] and in Section 4 about the fault-diameters of iterated
line digraphs are also generalized here for hyperdigraphs. We prove that, if
the number of iterations is large enough, the diameter of an iterated line hy-
perdigraph L* H increases in at most a constant value when some vertices or
hyperarcs are deleted. This constant value depends only on the properties of
the hyperdigraph H and does not depend on the number of iterations k.

Some results about the connectivity and the fault-diameter of Kautz and
de Bruijn hyperdigraphs are derived.

5.2 Basic results on connectivity

We say that a hyperdigraph H is simple if its underlying digraph H has no
parallel arcs. That is, a hyperdigraph H is simple if and only if there does not
exist any pair of hyperarcs Fy, Fy of H with Ef N Ey # 0 and Ef N EF # 0.

Proposition 5.1 Let H be a hyperdigraph. Then, its line digraph LH is a
simple hyperdigraph.

Proof: Let E, F be hyperarcs of LH such that E~ N F~ # (. Suppose that
F = (ElvlFl) and F = (EQUQFQ) IfE-NF- ;é @ then E1 E2 and V1 = va.
Then, Bt = {(vi Fiw;) : w; € F1+} and Ft = {(v1Foz) : F;’} If E+#F,
it must be Fy # Fy and then, EY N FT =§. O

Let H be a hyEerdlgraph with minimum degree d and minimum size s.
We denote by d= d(H) the minimum degree of the underlying digraph H. Let
x and A be, respectively, the vertex and hyperarc-connectivities of H and let &
and A be the vertex and arc-connectivities of the underlying digraph H.

It is clear that x = % and, from the properties of the connectivities of
digraphs, & < A < d. On the other hand, it is obvious that A <d.

If the hyperdigraph H is s-uniform, we have that d < ds. If;, besides,
is simple, d = ds. Then, in the uniform case, k = K < p\ < d < ds. Another
relation between the connectivities ofa hyperdlgraph is given in next proposition
for the uniform case.

Proposition 5.2 Let H = (V(H),E(H)) be an s-uniform hyperdigraph with
vertex and hyperarc connectivities x and X, respectively. Then, k < As.

Proof: Let F = {F1,..., Ex} C E(H) be a cut-set of H. Tt is not difficult to see
that at least one of the sets of vertices 7~ = E7U---UE} or Ft = Ei"U- . -UE;I\'
is a cut-set of H. Observe that |F~|,|FT| < As.O

We say that a hyperdigraph H is mazimally connected if k = d and
A = d. Observe that, if H is simple and s-uniform and has vertex-connectivity
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% = ds, then, from Proposition 5.2, A = d. Therefore, a simple and s-uniform
hyperdigraph H is maximally connected if and only if & = ds.

5.3 TFault-tolerance under deletion of vertices

The vertex-connectivity and of a hyperdigraph H coincides with the vertex-
connectivity of its underlying digraph H that is, k = k(H) = K = k(H ) The
same occurs with the (w — 1)-vertex-fault-diameter: Dy, (H) = Dy (H A) for any
w=1,. d where d is the minimum degree of H. Therefore, the numerous
known results about this parameter for digraphs, some of them presented in
the previous sections of this work, can be applied for hyperdigraphs just by
considering the underlying digraph.

Next results are obtained by considering the results about vertex-
connectivity of digraphs given in [23].

Proposition 5.3 Let H be a simple hyperdigraph with diameter D and vertex-
connectivity x. Let d be the minimum degree of the underlying digraph H and
consider U, = L. (H ), whereOSn‘Sd—Q Then, K?Zd—ﬂ' if D <26, —

Some interesting corollaries about the vertex-connectivity of iterated line
hyperdigraphs are deduced from this proposition. The follovvmg one is proved

by taking into account that L[FH = [*H and lr (Lk ) ={.(H ) + k whenever
H is a simple digraph, H is not a cycle and £, (H ) > 1.

Corollary 5.4 Let H be a simple hyperdigraph with diameter D. Let d be the
minimum degree of the underlymg digraph H and consider be = 0 (H ), where
0<7<d—2and (, (H )>1 Then, x(L*H )Zd—ﬂ'szZD—Qﬁﬂ—l—l.

The particular case m = 0 is specially interesting.

Corollary 5.5 Let H be a simple hyperdigraph with diameter D such that its
underlying dzgmph H is loopless. Let us consider lo = fo(H ) > 1. Then,
k(L*H )—d ifk>D—20+ 1.

Since the line hyperdigraph LH is simple for any hyperdigraph H, we can
see from the last corollary that, for any hyperdigraph H such that H is loopless,
the vertex-connectivity of L* H is maximum if the number of iterations k is large
enough. If, besides, H is s-uniform, we have seen that H is maximally connected
if and only if K = ds. Therefore, in that case, the iterated line hyperdigraph
L* H is maximally connected if k is large enough.

In a similar way, we can apply Theorem 4.7 and Corollary 4.8 in order to
find bounds on the vertex-fault-diameter of hyperdigraphs. In particular, from
Corollary 4.8, we can see that, if k is large enough, the (w — 1)-vertex-fault-
diameter of an iterated line hyperdigraph L*H is D, (L*H) < D(L*H) + C,
where C'is a constant that depends only on w and the properties of fI, but does
not depend on the number of iterations k.
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5.4 Hyperarc-connectivity

Bounds on the hyperarc-connectivity A of an s-uniform hyperdigraph H can be
derived from bounds on its vertex connectivity x because, in the uniform case,
k < As. In particular, we have seen that A =d if k = d = ds.

The aim of this section is to present some bounds for the hyperarc-
connectivity of a hyperdigraph H, even if H is not s-uniform. Sufficient condi-
tions for a hyperdigraph to have maximum hyperarc-connectivity, that is A = d,
are derived.

Let us recall that the bipartite representation of a hyperdigraph H is
a bipartite digraph R = R(H) = (V(R), A(R)) with set of vertices V(R) =
Vo(R) UVi(R), where Vo(R) = V(H) and Vi(R) = E(H), and set of arcs

AR) ={(u,E)|ue Vo, E€Vi,u€ ET}U{(F,v)|veE Vo, FeVi,ve Ft}.

Observe that, if u,v are two vertices of H, a path of length A from u to v in
H correspond to a path of length 2h in R(H) and, then, dr(u, v) = 2dg(u, v).
Observe also that the bipartite repreentation of the line hyperdigraph LH is
R(LH) = L?R(H).

The hyperarc-connectivity A = A(H) of a hyperdigraph H can be ex-
pressed in terms of the bipartite representation of H. In effect, X is the min-
imum cardinality of all the subsets F C Vi such that there exist two vertices
u,v € Vp such that there is no path from u to v in R — F.

We define next a parameter, similar to the parameter £, that will be
useful to find bounds on the hyperarc-connectivity. This parameter is defined
for bipartite digraphs and will be applied to the bipartite representation of
the hypergraph. Let R = (Vo(R) U Vi(R), A(R)) be a bipartite digraph. Let
us consider df (R) = min,ev, d¥ (v), the minimum out-degree of the vertices
in Vo, and dg (R), the minimum in-degree of the vertices in Vp. Let us take
do = do(R) = min{d},d;}. Let 7 be an integer such that 0 < 7 < do — 2. We
define hy = hr(R) as the maximum integer, with 1 < h, < D, such that for
any pair of vertices u, v, where u € V; and y € V; with i # j,

e if d(z,y) < hr, there is only one shortest path from x to y and there are
at most 7 paths from  to y with length d(z, y) + 2;

e if d(x,y) = hy, there is only one shortest path from z to y.
Let R = (Vo(R)UVi(R), A(R)) be a bipartite digraph. Then, the iterated

line digraph L%*R is a bipartite digraph and, in a natural way, we can put,
for i = 0,1, V;(L?R) = {xox1z2 € V(L?R)|zo € Vi(R)}. In this situation,
do(L?R) = do(R) and we can consider h,(R) and h,(L%R) for the same values

of .
Proposition 5.6 Let R = (Vo(R)UVI(R), A(R)) be a bipartite digraph different

from a cycle. Then, hy(L*R) = hy(R) +2 for any # = 1,...,do — 2. If there
are no cycles of length 2 in R, then ho(L?R) = ho(R) + 2
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Proof: Let us consider x = zoz1z9 € V;(L?’R) and y = yoy1y2 € Vj(LZR),
where ¢ # j. If d(x,¥) > 3 and d(x,y) < hz(R) + 2, then d(z2,y0) < h(R).
Therefore, the shortest path from z4 to yo is unique and so is the shortest path
fromx toy. Ifd(x,y) > 3 and d(x,y) < h-(R)+2, then d(z3, yo) < hr(R) and
there are at most m paths from x to y with length d(x,y) + 2. If d(x,y) = 1,
then the vertices zix2 and yoy; of LR are equal. Since in LR there is at most
one cycle of length 2 on the vertex z;x,, in L?R there is at most one path with
length 3 = d(x,y) 4+ 2 from x to y. If R has no cycles of length 2, there is not
any path of length 3 from x to y. Therefore, hr(L?R) > h,(R)+2if 7 > 1 or
7 = 0 and R has no cycles of length 2. Since R is not a cycle, it is not difficult
to see that hr(L?R) < h.(R) + 2.0

Proposition 5.7 Let R = (VoUV1, A) be a bipartite digraph and let us consider
he = he(R), where 0 < 7w < do — 2. Let us consider a vertexr x € Vy, a subset
F CVi, with |F| <do—m—1, and a vertex y € F. Then,

e There exisls a vertex x1 € Vo and a path xyixy such that y; ¢ F and
d(z1,y) > min{d(x,y) + 2, ho} and d(z1,y’) > min{d(z, '), hx} for any
vy eF.

o There exists a vertex x_y1 € Vy and a path x_1y_ & such that y_1 ¢ F
and d(y,x_1) > min{d(y, ) + 2, hz} and d(y',x_1) > min{d(y/, x), hr}
forany y € F.

Proof: We are going to prove the first statement. The second one is proved
analogously. Since |v(z — F)| < do — 7 — 1, there exists a vertex y; € 't (z) —
v(# = F) such that the first vertex of any path from z to y with length d(x, y)+2
is different from y;. Let z1 be any vertex in I'"(y;). Tt is not difficult to prove
that this vertex satisfies the required conditions.O

Theorem 5.8 Let H be a hyperdigraph with minimum degree d, diameter D
and hyperarc-connectivity A. Let R = R(H) be its bipartite representation and
consider hy = hy(R). Then, A\>d—m if D <h. —1.

Proof: We are going to prove that, if D < h, — 1, for any set of vertices of the
bipartite representation F C Vy = £(H), with |[F| < d— 7 — 1, and for any pair
of vertices u, v € Vg, there exists a path from u to v in R — F. Effectively, from
Proposition 5.7, we can find in R a path uFuj Eaus ... Epu,, such that E; ¢ F
and dg(tm,F) > hy. Equally, we can find a path v_,F_,,...0_3F_sv_1F_qv
such that F_; ¢ F and dr(v_pn,F) > hy. Then, a shortest path from u,, to
v_pn, which has length at most 2D < 2k, will avoid F.O

The following corollary is a direct consequence of Theorem 5.8 and Propo-
sition 5.6.

Corollary 5.9 Let H be a hyperdigraph with minimum degree d, and diameter
D. Let R = R(H) be its bipartite representation and consider hy = hr(R).
Then,
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e MILFH)>d—7ifk>D —hy + 1.
e If R has no cycles of length 2, then \(L*H) =d if k > D — ho + 1.

5.5 Hyperarc-fault-diameter

We present in this section some results about the hyperarc-fault-diameter,
D!, (H), of a hyperdigraph H, which is defined as the maximum diameter of
the hyperdigraphs obtained from H by removing at most w — 1 hyperarcs.

In the same way as we did for the hyperarc-connectivity, we are going to
use the bipartite representation R(H) to study that parameter. In particular,
we present a bound on D! (H) in terms of ho(R) and the parameter Mo 1(R),
which has been defined in Section 4.3. We are going to use the following lemma,
which is proved in a similar way as Proposition 5.7.

Lemma 5.10 Let R = (Vo U Vi, A) be a bipartite digraph without cycles of
length 2 and ho = ho(R). Let us consider a vertex x € Vy and a subset F C Vq,
with |F| <do—1. Then,

e There exisls a vertex x1 € Vo and a path xyixy such that y; ¢ F and
d(z1,y) > min{d(z,y) + 2, ho} for any y € F.

o There exists a vertex x_y1 € Vy and a path x_1y_ & such that y_1 ¢ F
and d(y,z_1) > min{d(y,x) + 2, hr } for anyy € F.

Theorem 5.11 Let H be a simple hyperdigraph with minimum degree d and
diameter D and let R = R(H) be its bipartite representation. Let us consider
h = ho(R) and M = Mo 1(R). Then, if D < h—1, forany w=1,...,d—1,
the w-hyperarc-fault-diameter of H verifies D, (H) < D4 C, where

c=ma{p- | M5 wa2 (0= [f])]

Proof: Let F C E(H) = Vi(R) be a set of faulty hyperarcs with |F| = w < d.
We are going to prove that, for any pair of vertices z,y € V(H) = V,(R),
there exists in H a path from z to y with length at most D + C avoiding
the hyperarcs in F. From Lemma 5.10, there exist paths xFjz; and y_1F_1y
in R such that Ey, E_1 ¢ F and dp(x1,F),dr(F,y_1) > 3 (observe that h >
D—+1 > 2). Besides, from the definition of the parameter My 1(R), we have that
dr(z1, F)+dr(F,y-1) > M — 4 for any F € F. Applying again Lemma 5.10,
for any m,n > 1 we can find paths zE121... Enem and y_n E_ ... y_1F_1y
such that, for any F € F,

dr(zm, F) > min{dg(x1, F) +2(m — 1), h}

and

dR(F7 y—”) > min{dR(Fa y—l) + 2(77, - 1)7 h}
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Then, if m,n > D — |h/2] and m +n = C, it is not difficult to see that
dr(zm, F)+ dr(F,y_n) > 2D for any F € F. Therefore, any shortest path in
R from z,, to y_,, which has length at most 2D, will avoid F. Hence, we have
found a path from z to y in H with length at most D+m+n = D+ C avoiding
the faulty hyperarcs in 7.0

As a consequence of Theorem 5.11, we obtain the following result about
the hyperarc-fault-diameter of iterated line hyperdigraphs.

Corollary 5.12 Let H be a simple hyperdigraph with minimum degree d and
diameter D and let R = R(H) be its bipartite representation. Let us consider
h = ho(R) and M = Mo 1(R). Then, for any k > D — h+ 1 and for any
w=1,...,d—1, the w-hyperarc-fault-diameter of the iterated line hyperdigraph
LF H verifies D{U_I_l(LkH) < D(L*H) 4+ C, where

c=ma{p- [V a0 ]2]))

Proof: Apply Theorem 5.11 by taking into account that R(L*H) = L* R(H)
and that ho(L?* R) = ho(R)+2k (Proposition 5.6) and MOJ(L%R) = Mo, 1(R)+
2k (Proposition 4.4).0

5.6 Applications

We apply next the results in the above sections in order to study the fault-
tolerance of the generalized de Bruijn and Kautz hyperdigraphs.

The vertex-connectivity of these hyperdigraphs can be derived from the
results about the vertex-connectivity of the corresponding digraphs that are
given in [42, 23]. Tt is proved in those papers that, if G is the generalized
de Bruijn digraph GB(d,n) or the generalized Kautz digraph GK(d,n) and
D(G) > 3, then x(G) >d—1. If G = GB(d,n), or G = GK(d,n) and d+ 1
does not divide n, then G has loops. In this case, x(G) = d — 1 if D(G) > 3.
Besides, if G = GK(d, n) has diameter D > 5, then

W(G) = { d if n is a multiple of d + 1 and ged(d, n) # 1;

d—1 otherwise.

We can obtain from these results the vertex-connectivity of the generalized de
Bruijn and Kautz hyperdigraphs.

Theorem 5.13 Let us consider positive integers d,n, s, m, with dn =, 0 and
sm =, 0. Let H be the generalized de Bruijn hyperdigraph H = GB(d, n, s, m).
Then, k(H) =ds—1if D(H) > 3.

Proof: We only have to take into account that o= G'B(ds,n) [8].0
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Theorem 5.14 Let us consider positive integers d,n, s, m, with dn =, 0 and
sm =, 0. Let H be the generalized Kautz hyperdigraph H = GK(d,n,s, m).
Then, k(H) > ds— 1 if D(H) > 3. Besides, if D(H) > 5,

ds if n is a multiple of ds + 1 and ged(ds,n) # 1;
k(H) = .
ds — 1 otherwise.

Proof: As before, o= GK (ds,n) [8].0

If dn = sm, the hyperdigraphs H; = GB(d,n,s,m) and H; =
GK (d,n, s, m) are s-uniform. In this case, we can find the hyperarc-connectivity
of those hyperdigraphs because x(H;) < A(H;)s. Therefore, if D(H;) > 3, we
have that A(H;)s > ds — 1 and, hence, A(H;) = d if s > 2.

The vertex-fault-diameter of the de Bruijn hyperdigraphs,

HB(d,s,D) = GB(d, (ds)”, s,d*(ds)”~1)
and Kautz hyperdigraphs,
HK(d,s, D) = GK(d, (ds)? 4 (ds)P =1, s, d*((ds)P~! 4 (ds)P %))

can be computed by taking into account that f/IP(d, s, D) = B(ds, D) and
HK(d,s, D) = K(ds, D). Therefore, Dy, (HB(d,s, D)) = D+ 2 for any w =
2,...,ds—1and Dy, (HK(d,s,D)) = D+ 2 for any w=2,...,ds.

6 Partial line hyperdigraphs

6.1 Introduction

The partial line hyperdigraph technique is a generalization of the line hyper-
digraph technique [6], the partial line digraph [33], and consequently, the line
digraph [36].

First, we show the usefulness of such technique for the (d,N,s)-
hyperdigraph problem.

We are going to show that the partial line hyperdigraph tends to increase
the connectivity. Clearly, the minimum degree of the partial line hyperdigraph,
is a natural lower bound.

Also we extend the definition of the index of expandability to hyperdi-
graphs. This allow to measure the capability of a bus network to increase its
number of processors.

We present a characterization of line hyperdigraphs in terms of line di-
graphs, proving a conjecture [6] for the characterization of line hyperdigraphs.

Finally, we study the application of the partial line hyperdigraph tech-
nique to the generalized Kautz hyperdigraphs. Also some results concerning
with digraphs are obtained.
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6.2 The technique

Given a hyperdigraph H = (V(H), (H)) with minimum in-degree at least 1 for
any set V' of vertices of LH such that {v: I(uFEv) € V'} = V(H), the partial
line hyperdigraph of H will be the hyperdigraph LH = (V(LH),E(LH)),

V(LH) =V
E(LH)={(FEvF):ve F~,ueV(H): (uFv) €V'}
where
(EvF)*t (vFw): (vFw) € V}U{(v'F'w):we Ft (vFw) ¢ V'}

=
(EoF)” ={(uEv):u € E~,(uFEv) € V'}

That is, (EvF)t contain all the vertices in the form (vFw) of V', and one
arbitrary vertex, (v/ F'w), if (vFw) is not in V'.

That is, the partial line hyperdigraphs depends on the election of the
set of vertices V' and also in the way that the out-sets of the hyperarcs are
constructed.

Note that always exists a set V' with {v: (uEv) € V'} = V(H), because
the minimum degree of H is at least 1.

Particularly, observe that in the case |V'| > ds, we can choose the vertices
in [V'| in such a way that £(LH) = £(LH). In this situation, the out-set of any
hiperarc EvF € E(LH) = E(LH) can be taken as (FvF)T = {(vFw) : (vFw) €
V3IU{(v'Fw):w e FT,(vFw) ¢ V'}. That is, it is not necessary to consider
hyperarcs F’ # F in order to determine the vertices in (EvF)*.

Notice that if H is a digraph, LH coincides with a partial line digraph.
Also, if V' = V(LH) then LH is LH. So, the partial line hyperdigraph tech-
nique is a generalization of the line hyperdigraph technique [6], the partial line
digraph [33], and consequently, the line digraph [36].

Next, we show some useful relations of this technique to digraphs.

Proposition 6.1 Let H = (V(H),E(H)) with minimum d > 1, and V' a set of
vertices of LH such that {v:3(uFEv) € V'} = V(H). For any vertex (uEv) and
any hyperarc (Evl') of the partial line hyperdigraph of H, LH,

df g (uBv) = df;(v);

sty(BEvF) = sk (F). O
Proposition 6.2 Let H be a hyperdigraph with minimum in-degree d > 1.

There erists a set of vertices of LH, and a set of arcs of fI, such that with
these sets LH and LH are isomorphic.

Proof: Given a set V' of vertices of LH such that {v: (uEv) € V'} = V(H). Let
E’ be the set of arcs of H defined by E' = {(u,v) : IE € E(H), (uEv) € V'}.
With these sets there is a trivial isomorphism between LH and £H. O
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6.3 The (d,s, N)-hyperdigraph problem

In [22] was presented a Moore like bound for the order of a hyperdigraph with
diameter D, maximum out-degree d and maximum out-size s:

N < 14 (dHst) + (dtst)? d++D_(d+5+)D+1_1

From this arises the following lower bound for the diameter:
(log g1 (N(d¥s* = 1) £ 1)) =1 < D.

We will show the good behaviour of the proposed technique for such problem.
The order of the hyperdigraph £H is the cardinal of V', and it is chosen
with the condition {v: (uFv) € V'} = V(H). Then,

VH)| < V(LH)| < [V(LH)].

The partial line hyperdigraph preserves the maximum out-degree of H.
In fact, df , (uEv) = d};(v) for any vertex (uEv) of LH. Also, the out-size of H
remains constant since for every hyperarc (EvF) of LH, st (EvF) = sf(F)
(the in-size of H is preserved too). Then, if H is d-regular, LH is also d-regular.

So, if the out-size of all hyperarcs of H is s,
V)| < V(LH)| < [V(H)l|ds

Since D(H) = D(f[) for every hyperdigraph H, by Proposition 6.2 we
have D(LH) = D(LH). Now, H is a digraph and by [33]: D(H) < D(LH) <

D(H)+ 1. So, D(H) < D(LH) < D(H) + 1= D(LH).

From all the above considerations about the order, maximum out-degree
and maximum out-size, we can state the following result:

Theorem 6.3 Let H be a hyperdigraph with mazimum out-degree dt > 1, maz-
imum out-size s, order N and diameter D. Then the order N, the mazimum
out-degree de the maximum out-size SZ and the diameter Dg of any partial

line hyperdigraph LH satisfy:

N < N; < Nds; df = d¥;
D<D;<D+1. st =st.0

6.4 Connectivity

To show that the partial line hyperdigraph tends to increase the connectivity
(with the minimum degree of the partial line hyperdigraph as a lower bound),
first, we extend a useful concept introduced in [33] for digraphs. A hyperdi-
graph H has no redundant short paths when there is at most one path of length
one or two between every pair of vertices (different or not) of H. Notice that

44



under this restriction we can still work with interesting hyperdigraphs. For
instance, the generalized De Bruijn hyperdigraphs and the generalized Kautz
hyperdigraphs [8] have no redundant short paths.

Lemma 6.4 Let H be a hyperdigraph. Then, H has no redundant short paths
if and only if H has no redundant short paths. O

Theorem 6.5 Let H be a hyperdigraph with minimum in-degree d > 1 and
minimum in-size s. If H has no redundant short paths:

min{x(H),d(LH)s} < «(LH)

Proof: By Lemma 6.4, H has no redundant short paths, so by the bound on the
connectivity of partial line digraphs [33], min{x(H),d(LH)} < &(LH). Since

k(H) = k(H), then min{x(H),d(LH)s} < x(LH). O

For the hyperarc-connectivity the analogous bound holds, but to prove
it, we need the following result of [6]:

Lemma 6.6 Let H be a hyperdigraph with hyperarc-connectivity A. Then, every
verter v in H is on A\ hyperarc-disjoint cycles.O

Theorem 6.7 Let H be a hyperdigraph with minimum in-degree d > 1. Let V'
be a set of vertices of LH, |V'| > ds, and LH a partial line hyperdigraph with
E(LH)=E(LH). Then, N(LH) > A(H).

Proof: Tt is enough to prove that a set of A = A(H) hyperarc-disjoint paths in
H induces a set of A hyperarc-disjoint paths in LH. Let (uEv) and (xFy) be
two different vertices of LH. In order to construct A hyperarc-disjoint paths
from (uFEv) to (¢Fy) in LH from A hyperarc-disjoint paths from v to # in H,
we consider two cases:

1. If v # 2, we have A hyperarc-disjoint paths from v to # in H:

P =v, B, vy, B vg, .. By v, 1, By

z

where ¢ = 1,...,< A. Each path P; gives rise to a path from (uFEv) to
(xFy), LP; in LH defined by:

LP; = (uBv), (EvE"), (v Ejwl), (Birvl B), (v Byv)), ...
(U Bl ), (B @' F), (2 Fy)

It is not difficult to see that the paths LP; are equally hyperarc disjoint.

2. If v = z, we proceed as in the above case but with hyperarc disjoint cycles
in H. By Lemma 6.6, if the hyperarc-connectivity is A, each vertex of H
is in A hyperarc-disjoint cycles. In the same way as we do with paths P;,
we can obtain A paths in LH from these cycles in H. Again, since the
original cycles are hyperarc-disjoint, these new paths are hyperarc-disjoint
also. O
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6.5 Expandability

Given two hyperdigraphs H and H', on N and N’ vertices, respectively, N < N’
we define the index of expandability of H to H', e(H,H'), as the minimum
number of hyperarcs that has to be modified or removed from H to obtain H'
by adding N’ — N vertices and some appropriate hyperarcs, if it is necessary.
That is, the index of expandability measures the necessary modifications
of hyperarcs of H, to obtain a sub-hyperdigraph H’.
Notice that this definition generalizes the corresponding one for digraphs.
If H is a hyperdigraph, £, H will denote a partial line hyperdigraph of H
with order n. Next we show that any hyperdigraph £, H has good expandability
to some L, 1H.

Theorem 6.8 Let H = (V(H),E(H)) be a hyperdigraph with mazimum in-
degree d > 1. For any partial line hyperdigraph Lo H on n vertices, |V(H)| <
n < |[V(LH)| — 1, there exists a digraph Ln41H, such that the index of expand-
ability of Lo, H to L1 H satisfies:

e(LnH, Loy H) < d

Proof: Let V' be the set of vertices of £,, H. The hyperdigraph £,,+1H can be
obtained from £, H by the following algorithm:

a) Choose a vertex (uFv) of LH which is not V’. Since |V'| < [V(LH)| - 1/,

always exist at least one.
b) Add the vertex (uFEv) to LH.

c) For every hyperarc of LH denoted by (FuFE), replace in their out-sets,
the vertex (u'E'v) by the vertex (uFEwv).

d) For every hyperarc F of H,if (EvF) is not a hyperarc of LH, add it, with
(EvF)t = {(vFw): (vFw) e VIU{(vF'w):we FT, (vFw) ¢ V'}.
(EoFP)” ={(uEv):ue E~,(uEv) € V'}.

For each F such that (FvF) is a hyperarc of LH, put the vertex (uFEv)
in the corresponding in-set.

We only add new hyperarcs or replace the existing ones in steps ¢) and
d), so the index of expandability is given by the number of changes there. Since
the maximum degree is d, this number is at most d. O

The above proof gives an algorithm to expand partial line hyperdigraphs.
With a few changes it can be used to decrease the number of vertices.

Also in some applications, it could also be useful to measure the number
of vertex-to-vertex connections that have to be modified to add components.
From the above algorithm:
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Corollary 6.9 Let H = (V(H),E(H)) be a hyperdigraph with mazimum in-
degree d > 1 and mazimum out-size s. For any partial line hyperdigraph L, H
on n vertices, [V(H)| < n < |V(LH)| — 1, there exists a hyperdigraph Lp41H,
such that the connections that have to be modified to transform Lo H to L1 H
are at most ds. O

6.6 Applications

As we have said before, the main goal of the partial line hyperdigraph technique
is to construct hyperdigraphs with minimum diameter. An interesting family of
such hyperdigraphs is obtained when this technique is applied to the de Bruijn
hyperdigraphs,

HB(d,s,D) = GB(d, (ds)”, s,d*(ds)”~1)
and Kautz hyperdigraphs,
HK(d,s, D) = GK(d, (ds)? 4 (ds)P =1, s, d*((ds)P~! 4 (ds)P %))

By doing that, we obtain a new family of hyperdigraphs with minimum diameter
that have other interesting properties in relation to the fault-tolerance and the
routing algorithms. For instance, as a direct consequence of next theorem, we
have that some of these hyperdigraphs are iterated line hyperdigraphs.

Theorem 6.10 Let H be a hyperdigraph with minimum in-degree d > 1. There
exists a set of vertices of LH, and a set of vertices of L*H , such that with these
sets LCH and LLH are isomorphic.

Proof: The vertices of LLH are in correspondence with the hyperarcs of LH,
so there are two kinds of vertices:

1. (uEv)(EvF)(v' F'w), with v € F~, we€ F* and (vFw) ¢ V(LH)
2. (uEv)(FvF)(vFw), withv € F~, w € F* and (vFw) € V(LH)

Clearly, for any choice of vertices of LH, there are different digraphs £LH and
LLH. For a given digraph LLH, we construct a set of vertices of LH by the
rules:

1. If (uEv)(EoF)(v' F'w) € V(LLH), we take (uEv)(EvF)(vFw)
2. If (uEv)(EvF)(vFw) € V(LLH), we take (uEv)(EvF)(vFw)

Now, applying the partial line technique to LH with this set of vertices,
LLH and LLH are isomorphic. O

Corollary 6.11 Let H be a hyperdigraph with minimum in-degree d > 1. There

exists a set of vertices of LH, and a set of vertices of L* T H, such that with
these sets, for any integer k > 1, L* LH and LL* H are isomorphic.
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Proof: By the above theorem, there exists a set of vertices of LH, and a set of
vertices of H, such that LLH and LLH. (The result for k = 1.) We are going
to prove by induction on k that the same holds for any k& > 1. Let us assume
that L'LH and LL'H are isomorphic for any integer i, 1 < i < k — 1, and we
are going to prove L¥LH and LL*H are isomorphic:

LLIFH = LLF-'LH ~ LF-1CLH ~ L' LH. O

6.7 On a conjecture of Bermond and Ergincan

In [6], Bermond and Ergincan conjecture that an equivalent condition for a
directed hypergraph to be a directed line hypergraph, is that its underlying
digraph and the underlying digraph of its dual, must be both line digraphs. We
are going to prove it.

Proposition 6.12 Let H be a hyperdigraph. If H is a line hyperdigraph then,
its underlying digraph H, and the underlying digraph of its dual, H*, are both,
line digraphs.

Proof: Since (LH)* is isomorphic to LH* and LH is isomomorphic to L [6],
if H is a partial line hyperdigraph, then H and H* are partial line digraphs
too, so we conclude that if H is a line hyperdigraph, both digraphs are also line
digraphs. O

Proposition 6.13 Let H be a hyperdigraph. If its underlying digraph, fI, and
the underlying digraph of its dual, H*, are both, partial line digraphs, then H is
a partial line hyperdigraph.

Proof: If H is a line digraph, its vertices, which are the set of vertices of H,
can be labeled with ordered pairs of vertices of other digraph, let us say Hjy,
where H = LH,. Moreover, we can assure that any two vertices u;v;, u;v; are
adjacent in H if and only if v; = u;.

Analogously, if H* is a line digraph, the set of vertices of fI\*, corre-
sponding with the set of hyperarcs of H, can be labeled with ordered pairs of
vertices of other digraph, let us say Hj, such that H* = LHj;. Besides, two
vertices of H*, F;F; and E;F}, are adjacent if and only if F; = E;. Then, by
the definition of fI\*, there exists a vertex v of H belonging to the out-set of
the hyperarc labeled E; F;, (E;F;)*", and to the in-set of the hyperarc with label
Eij, (Eij)_, if and only if F; = Ej.

Now, we modify the labeling for the vertices of H introducing the labeling
for the hyperarcs. That is, if a vertex labeled with w;v; is in (E;F;)~, we re-
label it with u; E;v;, and if the vertex with label u;v; is in (Eij)‘l', we re-label
it with u; F;v;. This is consistent because if a vertex belongs to (Epr)‘l' and to
(E4F,)~ it must be E, = F,,, because H* is a line digraph.

Then, we have defined a labeling in H with the line hyperdigraph condi-
tions, so H it is a line hyperdigraph. O

As a direct consequence of Propositions 6.12 and 6.13 we have proved:
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Theorem 6.14 Let H be a hyperdigraph. Then, H is a line hyperdigraph if
and only if its underlying digraph, H, and the underlying digraph of its dual,
H*, are line digraphs. O

Corollary 6.15 Let H be a hyperdigraph and k a positive integer. Then, H is
a k-iterated line hyperdigraph if and only if its underlying digraph, H, and the
underlying digraph of its dual, H*, are both, k-iterated line digraphs. O

7 De Bruijn sequences of maximum period
length

7.1 Introduction

A feedback shift register of length k over Z, is a k-tuple of elements in Z,
together with a feedback function f : Z% — Z,. The tuple represent the state
of the register, and the function f, the element introduced in the corresponding
shift from a given state [39]. The case of linear feedback function was carefully
studied by algebraic methods. On the contrary, for the non-linear case, only a
few properties are known.

To a given feedback shift register over Z,, it is possible to associate
the sequence of the feedback function for consecutive states of the register.
Moreover, this is a one-to-one correspondence. These are called De Bruijn
sequences.

Because of their randomness property, are specially interesting the De
Bruijn sequences with maximum period length. It was shown that they cannot
be obtained by linear feedback functions [58]. So, the feature is to find a way to
obtain, or at least characterize, all the non-linear feedback functions generating
De Bruijn sequences of maximum period length.

The De Bruijn sequences of maximum period were first introduced over
Z; [17]. There it was proved that if £ is the length of the register, the number of
all the De Bruijn sequences of maximum period length that can be generated is
22°-1 Ip [32] we deal with this problem from a theoretical graph point of view.

Different matrices can be associated to a digraph. For a given digraph G,
the adjacency matriz, M, has one row and one column by each vertex. If there
is an arc from the vertex ¢ to the vertex j in G, then (7, j) entry of the matrix is
1, and otherwise is 0. If k is a positive integer, a value 1 in the (4, j) entry of M*
means the existence of a path from ¢ to j of length k. In the incidence matriz,
I, rows represent the vertices and columns the arcs of G. Then, its (7,€) entry
is 1, if e is incident to ¢, —1 if € is incident from ¢, and 0 otherwise. If I has
n columns, m rows, and G has ¢ connected components, then rank(l) =n —¢

[11].
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7.2 Analysis based on graphs

In the following two sections we are going to present some results based in the
analysis of the adjacency and incidence matrix of a digraph. For a De Bruijn
sequence over Z,, with register length ¢ and feedback function f : Z{ — Z,,
first we consider another function F : Z¢ — Z{ defined by:

F(ro,a1,ees@no1) = (21, oy @nct, f(20, 210,00y 201))-

Now, we define a digraph with vertex set Z’, and a vertex z adjacent to
another vertex y, if and only if, y = f(z). We denote such digraph by Gp.

With this construction, note that G’y is a subdigraph of the De Bruijn
digraph B(n,f). A De Bruijn sequence has maximum period length, if and
only if, the corresponding G'r for its feedback function defines a hamiltonian
cycle in the corresponding De Bruijn digraph. Also note that, since the De
Bruijn digraphs are iterated line digraphs, is the same to find hamiltonian or
eulerian cycles. (Every eulerian cycle induces a unique hamiltonian cycle in its
line digraph).

Reciprocally, every hamiltonian cycle is in one-to-one correspondence
with some digraph G's, which is a subdigraph of B(n, ¢).

So, we are looking for all the hamiltonian cycles in a general De Bruijn
digraph, let us say B(n,¥{).

7.2.1 Application of the adjacency matrix of a digraph

Proposition 7.1 Let G’ be a subdigraph of a digraph G. If Mg and Mg are
respectively their adjacency matrices. Then, if the (i,j) entry of Mg is 0, the
(i,7) entry of Mg+ is also 0. O

Proposition 7.2 Let G be a digraph on n vertices and M its adjacency matriz.
For any positive integer i, 1 <1 < n, there is a cycle of length £ conlaining the
verter i, if and only if, the (i,4) entry of the matriz M is 1. D

As a consequence of the above two propositions we obtain the following
one:

Proposition 7.3 Let M be the adjacency matriz of a hamiltonian cycle in the
De Bruijn digraph B(n,t) with adjacency matrizc Mp:

a) is a permutation matriz;
b) the (i,j) entry of M can be 1 only if the (4, ) entry of Mp is 1;
c) fori=1,....0" — 1, the diagonal of M* has only entries with value 0;

d) in M"Y the diagonal has only entries with value 1. O
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To calculate all the De Bruijn sequences of maximum period length it is
possible with the above conditions, but using large scale symbolic calculations.
Perhaps are more interesting some properties that can be obtained from them.

For the binary case, for example, condition a) implies that:

2
ns

Given a function F : Z2 — Z
Z2 — 7?2 defined by:

we denote by F' another function F’ :

_ / — .

Fxo,x1,...,4p) = &1,..., 2,0, then F'(zo,1,...,2n) = &1,..., 25 1;
— ! —

Fxo,x1,...,4p) = &1,..., 21, then F'(zo,21,...,25) = 21, .., 2,0.

Proposition 7.4 If F : Z2 — Z2 defines a De Bruijn sequence of marimum
period length, then F' : Z2 — Z2% too. O

This means that it is sufficient to calculate a half of the desired function.

7.2.2 Application of the incidence matrix of a digraph

We present some conditions on the function f to make the corresponding func-
tion F, to determine a digraph G'r to be a hamiltonian cycle in the correspond-
ing De Bruijn digraph.

Proposition 7.5 Let F : Z! — Z! be a function and G its associated digraph.
Then, Gp is a hamiltonian cycle in B(n, ) if and only if, the following three
conditions hold:

a) F is bijective;
b) If t = xo,x1,..., 20 and y = F(x), then y = x1, ..., %, Tog1;
¢) Gp is connected.0

Clearly, the conditions a) and b) of the above proposition are easy to
check. To verify ¢) we propose the following result:

Proposition 7.6 Let I : Z!, — Z¢ be a function and G its associated digraph,

with incidence matriz Ip. Then, G is connected if and only if rank(Ip) =
‘

nt—1.0

With this proposition, together with the above one, we have a test to
decide whether or not, a De Bruijn sequence has maximum period length.

Erample: Suppose [ : Z3 — Zy defined by f(xo,z1,22) = 1 + 2o + 22 + z123.
Now, let us verify if the function F' : Z3 — Z3 defined by F(xo,z1,73) =
(1,22, f(xo, 21, 22)) verify the conditions of Proposition 7.5.

a): Tt is enough to show that F is injective, since it is clear that f is onto Zs.
So, let us suppose that

F(xo, 1, 22) = F (Y0, y1, ¥2)-
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Then, it must be:

($1,$2af($0,$1,$2)) Zi(ylayzaf(y07y17y2)l

Clearly it follows that x1 = y1, 22 = y2 and f(xo, 21, 22) = f(vo,¥1,y2), and
from these three equations also g = yo, and this condition is verified.

b): Tt is obvious.

¢): We have to calculate the rank of one incidence matrix for the corresponding
digraph G, let us say, Ip.

Let us assume that the columns, whose correspond to the vertices are
enumerated in the order:

000,001,010,011, 100,101,110, 111
and the rows, in correspondence with the arcs are in the order:

0001,0010,0101,1011,0111, 1110, 1100, 1000.

Then,
-1 1 0 0 0 0 0 0
0 -1 1 0 0 0 0 0
0 0 -1 1 0 0 0 0
Iy = 0 0 0 -1 1 0 0 0
0 0 0 0 -1 1 0 0
0 0 0 0 0 -1 1 0
0 0 0 0 0 0 -1 1
1 0 0 0 0 0 0 -1

The rank of this matrix is 7, so also this condition holds.

As a conclusion, f defines a hamiltonian cycle in B(2, 3).

Conclusions and open problems

In this work have been studied many problems related to the fault-tolerance
of interconnection networks based on digraph models. Also the fault-tolerance,
together with some basic problems in interconnection networks design have been
treated for hyperdigraphs models.

The wide and fault-diameters of the best known generalized cycles for
interconnection networks design have been given by finding containers in them.
These families contain other proposed good models. The results we have ob-
tained coincide with the known ones for them. They also shown the good
fault-tolerance capability of these families.
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More generally, we have introduced some terminology in terms of which
we have given bounds for fault-diameters in iterated line digraphs. Our bounds
improve the better known ones in many directions.

We have presented some results about hyperdigraphs. As a starting point
we have studied the connectivity. In order to do it, we have introduced some
terminology to determine bounds when a given number of elements are removed.
We have presented a characterization for maximally connected hyperdigraphs.
The fault-tolerance in hyperdigraphs has been studied. First, we have stated
bounds for the fault-diameters of maximally connected hyperdigraphs, extend-
ing some known results on digraphs.

In relation to the (d, N, s)-hyperdigraph problem we have extended the
partial line digraph, the line hyperdigraph, and of course, the line digraph tech-
niques, by defining the partial line hyperdigraph. This technique is shown to be
good for the mentioned problem. Moreover, the hyperdigraphs obtained have
good connectivity, expandability and easy routings. The partial line digraph
has been shown to give specially nice results when it is applied to the gener-
alized Kautz hyperdigraphs. Also for line hyperdigraphs we have presented a
characterization in terms of digraphs.

Finally, we include some properties we have obtained related to De Bruijn
sequences of maximum period length. A test to decide if a function generates a
sequence of maximum period length has been given. The digraph formulation
of the problem, is different from others introduced before to study the problem.

The study of wide and fault-diameters in any De Bruijn and Kautz gen-
eralized cycle is an interesting open problem, to continue the working in the
direction of Section 2. Another line of future work could be the application of
the techniques presented in this section to some families of hyperdigraphs.

The bounds for the fault-diameters presented in Section 3 can also be ap-
plied to other interesting families of digraphs. The problem consists in the cal-
culus of the involved parameters for other families of digraphs. The terminology
introduced in this section can be useful also to study other problems. From the
fault-tolerance point-of view, an open problem is to study the fault-diameters of
generalized de Bruijn and Kautz digraphs and hyperdigraphs. Equally, it would
be interesting to study this parameter for partial line hyperdigraphs, or at least
for partial line digraphs.

It could be interesting to study the possibility of applying the partial
line hyperdigraphs to the design of architectures for representing some opti-
cal networks. Particularly, the partial line of Kautz hyperdigraphs could be
interesting.

The digraph models that have been introduced for dealing with the De
Bruijn sequences, is a new point of view to continue studying the problem.
Another interesting analysis could arise from comparing the complexity of this
algorithm, with the complexity of the problem itself.
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