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Iterated line digraphs arise naturally in designing fault
tolerant systems. Diameter vulnerability measures the
increase in diameter of a digraph when some of its ver-
tices or arcs fail. Thus, the study of diameter vulnerability
is a suitable approach to the fault tolerance of a net-
work. In this article we present some upper bounds for
diameter vulnerability of iterated line digraphs LkG. Our
bounds depend basically on the girth of the digraph G
and on the number of iterations k. These bounds gener-
alize some previous results on diameter vulnerability of
line digraphs. Also, we apply our results to several impor-
tant families of line digraphs such as Kautz digraphs
and deBruijn generalized cycles, which contain deBruijn
digraphs, the Reddy-Pradhan-Kuhl digraphs, and the
butterflies. Our bounds allow us to obtain improvements
in known results on diameter vulnerability for all these
families. © 2004 Wiley Periodicals, Inc. NETWORKS, Vol. 45(2),
49–54 2005
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1. INTRODUCTION

Graphs and digraphs are a useful tool to model commu-
nication networks, because nodes and links can be naturally
represented by vertices and edges. As a consequence, several
interesting problems concerning interconnection networks
may be solved by studying different properties of these
structures.

This work deals with digraphs and a problem related
to fault tolerance. More specifically, if some nodes or
links of a network cease to function, it is desirable that
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the remaining nodes can efficiently communicate. Thus, it
is particularly interesting to study the behavior of some
parameters related to the efficiency of a network in the
presence of faults. As a consequence, diameter vulnera-
bility has been considered, because it provides a measure
of the maximum communication delay between any two
nodes [3, 4]. Most of the known results on this topic are
bounds for particular families of digraphs. The starting
point in this work will be the results for general iterated
line digraphs obtained in [10, 18]. Taking into account
the girth of the original digraph we obtain new bounds
on diameter vulnerability of line digraphs, which repre-
sent an improvement in the results given in [18]. Finally,
we apply our results to several important families of line
digraphs such as Kautz digraphs, and deBruijn general-
ized cycles, which contain the deBruijn digraphs [5], the
Reddy-Pradhan-Kuhl digraphs [20], and the butterflies [1].
All of these families have been considered as very impor-
tant interconnection network models. Our bounds allow us to
improve almost all known results concerning their diameter
vulnerability.

This article is organized as follows. In Section 2 we give
some definitions and notation that will be used throughout the
article. In Section 3 we show the role of the girth in relation to
the diameter vulnerability of iterated line digraphs. Finally,
in Section 4, we apply our results to some important families
contained in the class of iterated line digraphs.

2. DEFINITIONS AND NOTATION

We recall some basic concepts and terminology and refer
the reader to [6] for additional graph concepts.

From now on, G stands for a simple digraph, that is
one without loops or multiple arcs, with the set of vertices
V(G) and the set of arcs A(G). If x ∈ V(G), let �−(x) and
�+(x) denote, respectively, the sets of vertices adjacent to
and from x. The minimum degree of G will be denoted by
δ = δ(G). A path from a vertex x to a vertex y will be referred
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to as an x → y path. The distance from x to y is denoted by
dG(x, y) = d(x, y), and given a subset of vertices F, the dis-
tance from x to F is defined as d(x, F) = min{d(x, y):y ∈ F}.
The distance d(F, x) is defined analogously. The diameter of
G is D = D(G) = maxx,y∈V(G){d(x, y)}. The girth of G is
usually denoted by g, and it is defined as the length of the
shortest cycle.

A digraph G is said to be (strongly) connected when for
any pair of vertices x, y ∈ V(G) there exists an x → y path.
Throughout this article we deal with a connected digraph G.
As usual, the connectivity (or vertex-connectivity) and edge-
connectivity of G are denoted by κ = κ(G), and λ = λ(G),
respectively. It is well known that κ ≤ λ ≤ δ [14]. Hence,
G is said to be maximally connected when κ = λ = δ, and
maximally edge-connected when λ = δ.

In the line digraph LG of a digraph G each vertex
represents an arc of G, that is, V(LG) = {uv : (u, v) ∈ A(G)}.
A vertex uv is adjacent to a vertex wz if v = w, that is,
whenever the arc (u, v) of G is adjacent to the arc (w, z).
The line digraph operation is a useful tool for constructing
large digraphs with fixed degree and small diameter. If G
is a digraph different from a cycle, with minimum degree δ

and diameter D, then the iterated line digraph LkG has min-
imum degree δ and diameter D + k. The set of vertices of
LkG can be seen as the set of all walks of length k in G,
represented by sequences x0x1 . . . xk , where (xi, xi+1) is an
arc of G. A vertex x = x0x1 . . . xk in LkG is adjacent to
the vertex y = x1 . . . xkxk+1 for all xk+1 adjacent from xk .
A path of length h in LkG can be written as a sequence of
k + h + 1 vertices of G, where the vertices of this path are
the subsequences of k + 1 consecutive vertices of G. Notice
that between any pair of vertices of LkG there exists at most
one path of length less than or equal to k + 1. See [13] for
proofs and more information.

The parameter � [8, 11] appears to be very useful in the
study of properties related to the connectivity. Let G be a
digraph with minimum degree δ and diameter D. Let � =
�(G), 1 ≤ � ≤ D, be the greatest integer such that, for any
x, y ∈ V(G),

1. if d(x, y) < �, the shortest x → y path is unique, and there
are no paths of length d(x, y) + 1;

2. if d(x, y) = �, there is only one shortest x → y path.

Note that � ≥ 1. It was also proven in [8] that �(LkG) = �+k
if G has minimum degree δ ≥ 2. Also, in [8, 11] it was proven
that κ = δ if D ≤ 2� − 1, and λ = δ if D ≤ 2�. As a
consequence,

κ(LkG) = δ if k ≥ D − 2� + 1;

λ(LkG) = δ if k ≥ D − 2�.
(1)

For a digraph G and a positive integer s, the s-vertex
diameter-vulnerability K(s, G) is the maximum of the diam-
eters of the digraphs obtained by removing s arbitrary
vertices of G. Analogously can be defined the s-arc diameter-
vulnerability denoted by �(s, G). From the definition,

K(0, G) and �(0, G) coincide with the diameter D of G. The
connectivities κ(G) and λ(G) are, respectively, the minimum
values of s satisfying K(s, G) = ∞ and �(s, G) = ∞.

3. DIAMETER VULNERABILITY OF
ITERATED LINE DIGRAPHS

In this section we improve the results given in [18] by
taking into account the girth. First, we prove some useful
results concerning cycles in LkG. More precisely, in [18] it is
shown that for any given two cycles of LkG, xv1 . . . vm1−1x
and xw1 . . . wm2−1x, such that v1 �= w1, if the digraph has
loops (g = 1) then m1 + m2 ≥ k + 3, and if not, m1 + m2 ≥
k + 4. The next lemma generalizes such result.

Lemma 3.1. Let G be a digraph with girth g ≥ 2 and
let x be a vertex of LkG, k ≥ 0. Let xv1 . . . vm1−1x and
xw1 . . . wm2−1x be two cycles in LkG. If v1 �= w1, the sum
of the lengths of the two cycles is at least k + g + 2. That is,
m1 + m2 ≥ k + g + 2.

Proof. Observe that the girth of LkG is g for every
k ≥ 0. Notice that if either m1 ≥ k + 2 or m2 ≥ k + 2
the result is obvious. Then, let us assume that g ≤ m1 ≤
m2 ≤ k + 1 and m1 + m2 ≤ k + g + 1 (otherwise, we
would have finished). Let x = x0x1 . . . xk , where the xi

are vertices of G. The cycles C1 = xv1 . . . vm1−1x and
C2 = xw1 . . . wm2−1x can be respectively denoted by the
sequences of vertices of G, x0x1 . . . xky0y1 . . . ym1−1 and
x0x1 . . . xkz0z1 . . . zm2−1, where y0 �= z0 because v1 �= w1.
Because the vertex x appears in the m1-th position of the cycle
C1, then x = x0x1 . . . xk = xm1 . . . xky0y1 . . . ym1−1. When
m1 ≤ k, looking at this equality term by term, we obtain the
system of equations: x0 = xm1 , x1 = xm1+1, . . . , xk−m1 = xk ,
xk−m1+1 = y0, . . . , xk = ym1−1. That is, when m1 ≤ k, the
following condition is satisfied:

if i ≡ j (mod m1), then xi = xj for all 0 ≤ i, j ≤ k. (2)

Analogously, as the vertex x appears in the m2-th position
at the cycle C2, then x = x0x1 . . . xk = xm2 . . . xkz0z1 . . .

zm2−1. Hence, if m2 ≤ k, we have the system of equa-
tions: x0 = xm2 , x1 = xm2+1, . . . , xk−m2 = xk , xk−m2+1 =
z0, . . . , xk = zm2−1. That is, the following condition is also
satisfied when m2 ≤ k:

if i ≡ j (mod m2), then xi = xj for all 0 ≤ i, j ≤ k. (3)

We consider an integer R, 0 ≤ R ≤ m1 − 1, such that
m2 ≡ R (mod m1). First, suppose that m2 = k + 1, that is,
xj = zj, 0 ≤ j ≤ k. If m1 = k + 1, then xj = yj, 0 ≤ j ≤ k,
thus x0 = y0 = z0, which is an absurdity. Because we are
assuming that m1 + m2 ≤ k + g + 1, then m1 = g ≤ k.
From (2), it follows that xk−g+1 = xR. Because xk−g+1 = y0,
x0 = z0, and z0 �= y0, then R �= 0. As a consequence,
xk = xk−g = xR−1, and xkz0z1 . . . zR−1 = xR−1x0x1 . . . xR−1
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is a cycle in G of length 1 ≤ R ≤ g − 1, which is a contra-
diction. Therefore, g ≤ m1 ≤ m2 ≤ k. Second, suppose that
R = 0, or in other words, m1 divides m2. Then the congruence
k − m2 + 1 ≡ k − m1 + 1 (mod m1) is satisfied. Now, from
(2) it follows that xk−m2+1 = xk−m1+1, yielding z0 = y0, a
contradiction. Therefore, 1 ≤ R < m1.

Finally, according to (2) we have xm2 = xR, and from (3),
we obtain x0 = xm2 = xR. Furthermore, combining (2) and
(3) we obtain the system of equations: x0 = xm2 = xR,
x1 = xm2+1 = xR+1, . . . , xk−m2 = xk = xk−R, xk−m2+1 =
z0 = xk−R+1, . . .. That is, the following condition is satisfied:

if i ≡ j (mod R), then xi = xj for all 0 ≤ i, j ≤ k. (4)

Because m1 +R ≤ m2 ≤ k we have 0 < k +1−m1 −R < k.
Hence, from (2) it follows that z0 = xk+1−R = xk+1−m1−R,
and from (4) xk+1−m1−R = xk+1−m1 = y0, that is, y0 = z0,
which is a contradiction. ■

Now, we show that the parameter � is a suitable index to
study how far away two different vertices of LkG can be.
To this end, it is convenient to introduce the following nota-
tion. If x and f are two different vertices of a digraph G
such that d(x, f ) ≤ �, the vertex v such that (x, v) is the first
arc of the unique shortest path from x to f is denoted by
v(x → f ). If d(f , x) ≤ �, the vertex v such that (v, x) is the
last arc on the unique shortest path from f to x is denoted
by v(x ← f ). If F is a set of vertices of G and x �∈ F we
define v(x → F) ={v(x → f ):f ∈ F, d(x, F) ≤ �}. The set
v(x ← F) is defined analogously. The following two lemmas
are stated in [11, 18].

Lemma 3.2. [11, 18] Let G be a loop-less digraph with
� = �(G) and minimum degree δ > 1. Let x and f be two
different vertices of G. If d(x, f ) ≤ �, then for all x1 ∈ �+(x),
x1 �= v(x → f ), it follows that d(x1, f ) ≥ min{d(x, f ) +
1, �}. Analogously, if d(f , x) ≤ �, for all x′

1 ∈ �−(x), x′
1 �=

v(x ← f ) it follows that d(f , x′
1) ≥ min{d(f , x) + 1, �}.

Lemma 3.3. [11, 18] Let G be a loop-less digraph with
� = �(G) and minimum degree δ > 1. Let F be a set of
vertices of G such that |F| < δ and let x �∈ F. Then for any
integer m ≥ 1, (a) there exists a path xx1x2 . . . xm such that
for any f ∈ F, d(xi, f ) ≥ min{d(xi−1, f ) + 1, �}; (b) there
exists a path ym . . . y2y1y such that for any f ∈ F, d(f , yi) ≥
min{d(f , yi−1) + 1, �}.

The next result is similar to Lemma 3.2, but it applies to
iterated line digraphs. Intuitively, it sets a lower bound on
the length of a path between two given vertices other than a
shortest path.

Lemma 3.4. Let G be a digraph with girth g ≥ 2 and
parameter � = �(G). Let x and f be two different vertices of
LkG, k ≥ 0, such that d(x, f) ≤ k. Then d(x1, f) ≥ d(x, f) +
g − 1, for all x1 ∈ �+(x) \ {v(x → f)}.

Proof. Let us call d the distance from x to f, that is,
d(x, f) = d ≤ k. The shortest path from vertex x to f
can be represented by the sequence x0x1 . . . xky0y1 . . . yd−1.
Hence, vertex f = f0f1 . . . fk = xd . . . xky0y1 . . . yd−1.
From Lemma 3.2 it follows that d(x1, f) ≥ d + 1 because
�(LkG) = k + � ≥ k + 1. Let us consider an integer r ≥ 1
such that d+r = d(x1, f). The shortest path from vertex x1 to
f can be represented by the sequence x1 . . . xkz0z1z2 . . . zd+r .
First, if d + r < k, then f0 = xd+r+1, and because f0 = xd ,
G contains the cycle xd , . . . , xd+r+1 of length r + 1, that is
r ≥ g−1. Finally, if d +r ≥ k, then zd+r−k = f0 = xd , so the
cycle xd , . . . , xk , z0, . . . , zd+r−k of length r + 1 is contained
in G. Therefore, we have proven that d(x1, f) = d + r ≥
d(x, f) + g − 1, and the result holds. ■

Corollary 3.5. Let G be a digraph with girth g ≥ 2 and
parameter � = �(G). Let x, y and f be three different vertices
of LkG, k ≥ 0. Then d(x1, f) ≥ min{g, k + 1}, for all x1 ∈
�+(x) \ {v(x → f)}. Analogously, d(f , y1) ≥ min{g, k + 1},
for all y1 ∈ �−(y) \ {v(y ← f)}.

Proof. As a consequence of Lemma 3.4, if d(x, f) ≤ k,
then d(x1, f) ≥ d(x, f) + g − 1 ≥ g; and if d(x, f) ≥ k + 1,
then d(x1, f) ≥ min{d(x, f) + 1, � + k} ≥ k + 1, because of
Lemma 3.2. Then, d(x1, f) ≥ min{g, k + 1}. Analogously,
d(f , y1) ≥ min{g, k + 1}, so the result holds. ■

At this point we are able to state the following result.

Lemma 3.6. Let G be a digraph with girth g ≥ 2 and
let x, y and f be three different vertices of LkG, k ≥ 0. Let
x1 ∈ �+(x)\{v(x → f)} and y1 ∈ �−(y)\{v(y ← f)}. Then

d(x1, f) + d(f , y1) ≥
{

2k + 2 if g ≥ k + 1;

g + k if g ≤ k.

Proof. As a consequence of Corollary 3.5, d(x1, f) ≥
min{g, k+1}, and d(f , y1) ≥ min{g, k+1}, so the result holds
if g ≥ k + 1. Moreover, if d(x, f) ≥ k + 1, then d(x1, f) ≥
k + 1, where the result is also true. Furthermore, if d(x, f) =
k, then d(x1, f) ≥ k + g − 1 and the result also holds. In the
same way it is shown that the result is valid if d(f , y) ≥ k.
Therefore, let us assume that 1 ≤ d(x, f) = d1 ≤ k − 1,
1 ≤ d(f , y) = d2 ≤ k − 1 and g ≤ k. By Lemma 3.4, we
can consider two integers r1, r2 ≥ g − 1 such that d(x1, f) =
d1 + r1 and d(f , y1) = d2 + r2. Also, we can suppose that
d1 +d2 ≤ k −1; otherwise, d1 + r1 +d2 + r2 ≥ k +2g−2 ≥
k + g, and we are done. For k′ = k − d1 − d2 > 0 we have
that LkG = Ld1+d2 Lk′

G, so we can represent the vertices of
LkG by sequences of d1 + d2 + 1 vertices of Lk′

G. With
this notation, x = x0x1 . . . xd1+d2 and y = y0y1 . . . yd1+d2 .
The x → f → y path of length d1 + d2 can be denoted by
the sequence x0x1 . . . xd1+d2−1y0y1 . . . yd1+d2 , that is, y0 =
xd1+d2 , and f = f0f1 . . . fd1+d2 = xd1 . . . xd1+d2−1y0y1 . . . yd1 .
Observe that fd2−1 = xd1+d2−1, fd2 = y0, fd2+1 = y1. We also
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obtain x1 = x1 . . . y0a, with a �= y1 because x1 �= v(x → f).
The x1 → f path of length d1 + r1 can be represented by

x1 . . . y0afd2−r1+1 . . . fd2 . . . fd1+d2 =
x1 . . . y0afd2−r1+1 . . . xd1+d2−1y0y1 . . . yd1 ,

where, if d2−r1+1 < 0, the vertices fj with j < 0 are those of
a path from a to f0. Also, we obtain y1 = by0y1 . . . yd1+d2−1,
with b �= xd1+d2−1 because y1 �= v(y ← f). The f → y1 path
of length d2 + r2 can be represented by

f0 . . . fd2 . . . fd2+r2−1by0 . . . yd1+d2−1 =
f0 . . . xd1+d2−1y0y1 . . . fd2+r2−1by0 . . . yd1+d2−1,

where, if d2 + r2 − 1 > d1 + d2, then the vertices fj with
j > d1 + d2 are those of a path from fd1+d2 to b. Therefore,
we find in Lk′

G the two following cycles of lengths r1 + 1
and r2 + 1

y0a . . . xd1+d2−1y0 and y0y1 . . . by0,

which satisfy the conditions of Lemma 3.1 because a �= y1.
Hence, r1 + r2 + 2 ≥ k′ + g + 2 = k − d1 − d2 + g + 2 and
d(x1, f) + d(f , y1) = d1 + r1 + d2 + r2 ≥ k + g. ■

As it follows from (1), if k ≥ D − 2� + 1 the digraph
LkG is maximally connected, so we can guarantee that
K(s, LkG) < ∞, whenever s ≤ δ − 1. In this sense, we are
ready to state the following theorem.

Theorem 3.7. Let G be a digraph with girth g ≥ 2, mini-
mum degree δ > 1, parameter � = �(G), and diameter D. Let
s be an integer such that 1 ≤ s ≤ δ − 1. If k ≥ D − 2� + 1,
then the s-vertex-diameter vulnerability of the iterated line
digraph LkG is K(s, LkG) ≤ D(LkG) + 2m, where

m = max

×
{

{
(D − k + 1)/2�, D − k + 1 − �}, if g ≥ k + 1;

{
(D + 3 − g)/2�, D − � − g + 2}, if g ≤ k.

Proof. Let F �= ∅ be a set of vertices of LkG with |F| =
s ≤ δ − 1 and let x0, y0 be two different vertices not in F. To
prove the result, it is enough to find a path from x0 to y0 not
containing any vertex of F and with length D(LkG) + 2m.
From Lemma 3.3, there exists a path x0x1 . . . xm such that,
for any vertex f ∈ F, and for any i = 1, 2, . . . , m, d(xi, f) ≥
min{d(xi−1, f) + 1, � + k}. In the same way there exists a
path ym . . . y1y0 such that, for any vertex f ∈ F, and for any
i = 1, 2, . . . , m, d(f , yi) ≥ min{d(f , yi−1) + 1, � + k}. That
is, we have either

d(xm, f) + d(f , ym) ≥




d(x1, f) + d(f , y1) + 2m − 2, or

d(x1, f) + m − 1 + � + k, or

� + k + d(f , y1) + m − 1, or

2� + 2k.

Because k ≥ D−2�+1 we have that if d(xm, f)+d(f , ym) ≥
2� + 2k, then d(xm, f) + d(f , ym) ≥ 2� + 2k ≥ D + k + 1 =
D(LkG) + 1. Notice that from Lemma 3.4 it follows that
d(x1, f), d(f , y1) ≥ min{k + 1, g}. So, if g ≥ k + 1 and m =
max{
(D−k+1)/2�, D−k+1−�} then d(xm, f)+d(f , ym) ≥
D + k + 1 = D(LkG) + 1. If g ≤ k and m = max{
(D +
3 − g)/2�, D − � − g + 2}, from Lemma 3.6 it follows that
d(xm, f)+d(f , ym) ≥ g+k+2m−2 ≥ D+k+1 = D(LkG)+
1. Hence, we conclude that any path from xm to ym through
any vertex of F has length at least D+k+1. Therefore, we can
assure the existence of a shortest path from xm to ym, of length
at most D+k, which contains no vertex of F. Hence, we have
found a path from x0 to y0, x0x1 . . . xm . . . ym . . . y1y0, with
length at most D(LkG) + 2m and avoiding F. ■

To study the arc case we introduce the following notation.
Let x and e = (u, v) be, respectively, a vertex and an arc of a
digraph G, and let us define d(x, e) = d(x, u) and d(e, x) =
d(v, x). Now, if 1 ≤ d(x, e) ≤ � the first arc on the unique
shortest path from x to u is denoted by a(x → e). If x = u
then a(x → e) = e. Analogously, if 1 ≤ d(e, x) ≤ � the
last arc on the unique shortest path from v to x is denoted by
a(x ← e), and a(x ← e) = e if x = v.

Lemma 3.8. Let G be a digraph with girth g ≥ 2 and
minimum degree δ > 1. Let x and y be two different vertices,
and let e = (u, v) be an arc of LkG, k ≥ 0. Let (x, x1) be an
arc different from a(x → e) and (y, y1) be an arc different
from a(y ← e). Then

(a) d(x1, u), d(v, y1) ≥ min{k + 1, g − 1};
(b) d(x1, u) + d(v, y1) ≥ 2k, if g ≥ k + 1;

d(x1, u) + d(v, y1) ≥ k + g − 1, if g ≤ k.

Proof. (a) The result follows from Corollary 3.5 when
x �= u and y �= v. Furthermore, if x = u or y = v, the result
also holds because obviously d(x1, u), d(v, y1) ≥ g − 1.

(b) If k + 1 ≤ g − 1, then from case (a) we have
d(x1, u) + d(v, y1) ≥ 2k + 2. Moreover, if k + 1 = g,
again from case (a), d(x1, u) + d(v, y1) ≥ 2g − 2 = 2k.
Therefore, assume that g ≤ k. Notice that x1 �= v(x → u)

and y1 �= v(v → y), because (x, x1) �= a(x → e) and
(y, y1) �= a(y ← e), respectively. Then the result follows
directly from Lemma 3.4, if d(x, u), d(v, y) ≥ k. Thus sup-
pose that d(x, u), d(v, y) ≤ k − 1; hence, x1 �= v(x → v)

and y1 �= v(u → y), because between any pair of vertices of
LkG there exists at most one path of length at most k + 1. To
finish the proof, let us distinguish the following cases:

(b1) Suppose x �= u and y �= u. From Lemma 3.6, it
follows that d(x1, u)+d(u, y1) ≥ k+g. Therefore, d(x1, u)+
d(v, y1) ≥ k + g − 1, because d(u, y1) ≤ 1 + d(v, y1).

(b2) Suppose x = u and y �= v. Then x �= v and from
Lemma 3.6, it follows that d(x1, v)+d(v, y1) ≥ k+g. There-
fore, d(x1, u) + d(v, y1) ≥ k + g − 1, because d(x1, v) ≤
d(x1, u) + 1.
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(b3) Suppose x = u and y = v. Consider the cycle C1 =
xx1 → x, where x1 → x is a shortest path, and the cycle
C2 = y → y1y, where y → y1 is a shortest path. Thus, C1

and C2 are two cycles of LkG joined by the arc e = (x, y).
As k ≥ g ≥ 2, the vertices of LkG can be represented as
sequences of two vertices of Lk−1G. With this notation x =
x0x1, x1 = x1a and y = x1b, where x0, x1, a, b ∈ Lk−1G
and a �= b, because x1 �= v(x → y). Then Lk−1G must
contain two cycles C′

1 = x1a . . . x1 and C′
2 = x1b . . . x1

whose lengths are 1+d(x1, x) and d(y, y1)+1, respectively.
From Lemma 3.1, the sum of their lengths is at least (k −
1) + g + 2, so d(x1, x) + d(y, y1) ≥ k + g − 1. ■

As a direct consequence of (1) it follows that the digraph
LkG is maximally arc connected when k ≥ D − 2� so, as in
the vertex case, we can assure that �(s, LkG) < ∞ when-
ever s ≤ δ − 1. The following theorem is the arc version of
Theorem 3.7.

Theorem 3.9. Let G be a digraph with girth g ≥ 2, mini-
mum degree δ > 1, parameter � = �(G), and diameter D. Let
s be an integer such that 1 ≤ s ≤ δ − 1. Then, if k ≥ D − 2�,
the arc-diameter vulnerability of the iterated line digraph
LkG is �(s, LkG) ≤ D(LkG) + 2m where

m = max

×
{

{
(D − k + 2)/2�, D − k − � + 1}, if g ≥ k + 1;

{
(D + 3 − g)/2�, D − � − g + 2}, if g ≤ k.

Proof. Let F be a set of arcs of LkG with |F| = s, 1 ≤
s ≤ δ−1. Consider the sets of vertices F1 = {u : (u, v) ∈ F},
F2 = {v : (u, v) ∈ F} and two different vertices x, y of LkG.
We will find a path from x to y not containing any arc of F
and with length at most D(LkG) + 2m.

Let us define the sets a(x → F) = {a(x → e):e ∈
F, d(x, e) ≤ � + k} and a(y ← F) = {a(y ← e):e ∈
F, d(e, y) ≤ � + k}. Because s ≤ δ − 1, there exist arcs
(x, x1) �∈ a(x → F) and (y1, y) �∈ a(y ← F). Moreover, if
x �∈ F1, then x1 �∈ F1; and, if x ∈ F1, then we can take a ver-
tex x1 �∈ F1 because |a(x → F)| ≤ s < δ. In the same way,
we show that we can take y1 �∈ F2. Now, from Lemma 3.3
there exists a path xx1 . . . xm, such that, for any u ∈ F1 and
for any i = 2, . . . , m, d(xi, u) ≥ min{d(x1, u)+ i−1, �+k}.
Analogously, there exists a path ym . . . y1y, such that, for any
v ∈ F2 and for any i = 2, . . . , m, d(v, yi) ≥ min{d(v, y1) +
i − 1, � + k}. That is, we have either

d(xm, u)+1+d(v, ym) ≥




d(x1, u) + d(v, y1) + 2m − 1, or

d(x1, u) + m + � + k, or

� + k + d(v, y1) + m, or

2� + 2k + 1

First, notice that if d(xm, u)+1+d(v, ym) ≥ 2�+2k+1, then
d(xm, u)+1+d(v, ym) ≥ D(LkG)+1, because k ≥ D−2�.
Moreover, because (x, x1) �= a(x → e) and (y1, y) �= a(y ←

e) (recall e = (u, v)) we can apply Lemma 3.8 and, hence,
d(x1, u), d(v, y1) ≥ min{k + 1, g − 1}. So, if g ≥ k + 1 and
m = max{
(D − k + 2)/2�, D − k − � + 1}, then d(xm, u) +
1+d(v, ym) ≥ D+k +1 = D(LkG)+1. If g ≤ k, then from
Lemma 3.8 it follows that d(x1, u) + d(v, y1) ≥ g + k − 1.
Therefore, if m = max{
(D + 3 − g)/2�, D + 2 − � − g},
d(xm, u) + 1 + d(v, ym) ≥ D + k + 1 = D(LkG) + 1.
Thus, we can now assure the existence of a shortest path
from xm to ym of length at most D + k, which contains no
arc of F. Hence, G must contain a path from x to y (the path
xx1 . . . xm . . . ym . . . y1y) with length at most D(LkG) + 2m
avoiding F. ■

4. APPLICATIONS

In this section we apply the above results to some impor-
tant families of iterated line digraphs. Diameter vulnerability
of each of these families has been studied in the past by using
particular methods for each one. The advantage of our results
is that they can be applied to each of these families just taking
into account the girth and parameter � of the original digraph.
Furthermore, if the number of iterations k is not small,
then our results improve the previous bounds given until
now.

4.1. Kautz Digraphs

The Kautz digraph K(d, D) is the iterated line digraph
LD−1Kd+1, where Kd+1 denotes the complete symmetric
digraph on d + 1 vertices [17]. Diameter vulnerability of
the Kautz digraphs has been studied by finding disjoint paths
between any pair of vertices [7, 16].

Now, we apply Theorem 3.7 and Theorem 3.9 to this
family.

Corollary 4.1. Let G = K(d, D) be the Kautz digraph of
degree d ≥ 2 and diameter D ≥ 2. Let s be an integer
such that 1 ≤ s ≤ d − 1. Then the diameter vulnerability of
G is

K(s, G) ≤ D(G) + 2;

�(s, G) ≤ D(G) + 2.

The bounds obtained in the above corollary coincide with
those presented in [10].

4.2. Dense Bipartite Digraph

For any positive integers d, n, with d ≤ n, the dense bipar-
tite digraph BD(d, n) introduced in [12] has the set of vertices
V = Z2 × Zn = {(α, i); α ∈ Z2, i ∈ Zn} where Zn denotes
the integers modulo n and each vertex (α, i) is adjacent to
the vertices of �+(α, i) = {(1 − α, (−1)αd(i + α) + t);
t = 0, 1, . . . , d − 1}. The digraphs BD(d, dk−1 + dk−3)

can also be obtained as iterated line digraphs of BD(d, d2 +
1), which has diameter D = 3, g = 4, and parameter
� = 2.
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Corollary 4.2. Let d ≥ 2, k ≥ 3 and s, 1 ≤ s ≤ d − 1, be
three integers. Then the diameter vulnerability of the digraph
G = BD(d, dk−1 + dk−3) is

K(s, G) ≤ 7, �(s, G) ≤ 8, if 3 ≤ k ≤ 6;
K(s, G) ≤ k + 2, �(s, G) ≤ k + 2, if k ≥ 7.

Proof. Consider the digraph BD(d, d2 + 1), which has
a diameter of 3, a girth of 4, and a parameter � equal to 2.
The result follows by applying Theorem 3.7 and Theorem 3.9
to the digraph BD(d, d2 + 1), taking into account that G =
Lk−3BD(d, d2 + 1) has a diameter k. ■

Diameter vulnerability of this family was also studied in
[19], where it was proven that the diameter increases by at
most one unit if fewer than d − 2 vertices are removed, and
by at most two when d − 2 or d − 1 vertices are deleted.
For most cases our results improve the known bounds, while
for the diameter equal to 3 or k = 4, the known bounds are
exceeded by at most two units. Moreover, if k ≥ 7, the bounds
presented here improve by one unit those obtained from the
bounds presented in [10].

4.3. The deBruijn Generalized Cycle

The deBruijn generalized cycle BGC(p, d, dk+1) is
defined as the k iterated line digraph of Cp ⊗ K+

d where Cp

denotes the directed cycle of length p, K+
d is the complete

digraph on d vertices with a loop on each vertex. The con-
junction of the cycle Cp with an arbitrary digraph H, denoted
by Cp ⊗ H, has the set of vertices Zp × V(H) where a vertex
(α, x) is adjacent to the vertices (α + 1, y) for any y adjacent
from x in the digraph H. Observe that Cp ⊗H is a generalized
p-cycle for any digraph H considered in [15] and in [2], its
connectivity being studied in the latter reference. The digraph
BGC(p, d, d) = Cp ⊗ K+

d , the complete p-generalized cycle
of degree d, has a diameter and girth equal to p and a parame-
ter � = 1. The family of deBruijn generalized cycles contains
the deBruijn digraphs [5], the Reddy-Pradhan-Kuhl digraphs
[20], and the butterflies [1], all of them being very important
interconnection network models.

Corollary 4.3. Let G = BGC(p, d, dk+1) be the deBruijn
generalized cycle with d ≥ 2, p ≥ 2 and k ≥ p − 2. Then its
diameter vulnerability for 1 ≤ s ≤ d − 1 is

K(s, G) ≤ D(G) + 2, if k = p − 1;
K(s, G) ≤ D(G) + 3, if k ≥ p;
�(s, G) ≤ D(G) + p + 2 − k, if p − 2 ≤ k ≤ p − 1;
�(s, G) ≤ D(G) + 3, if k ≥ p.

Diameter vulnerability of BGC(p, d, dk+1) was previously
studied in [9] by finding disjoint paths between any pair of
different vertices. If k = p − 1, the bounds obtained from the
above corollary coincide with the results in [9]; for all other
values, the new bounds differ from those found in [9] by one
unit.
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