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The partial line digraph technique was introduced in
[7] in order to construct digraphs with a minimum di-
ameter, maximum connectivity, and good expandabil-
ity. To find a new method to construct directed hy-
pergraphs with a minimum diameter, we present in
this paper an adaptation of that technique to directed
hypergraphs. Directed hypergraphs are used as mod-
els for interconnection networks whose vertices are
linked by directed buses. The connectivity and expand-
ability of partial line directed hypergraphs are stud-
ied. Besides, we prove a conjecture by J-C. Bermond
and F. Ergincan about the characterization of line
directed hypergraphs. © 2002 Wiley Periodicals, Inc.
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1. INTRODUCTION

Graphs and hypergraphs are used as interconnection
network models. While point-to-point networks are mod-
eled by graphs, hypergraphs are used as models for bus
networks. If the buses are unidirectional, directed hyper-
graphs, called hyperdigraphs for short, are considered.
See [3, 9] for more details about this modeling technique.

Since the number of buses that a vertex can be con-
nected to and the number of vertices that can be commu-
nicated by a bus are both limited, it is not possible to in-
terconnect every pair of vertices in a bus network with a
large number of vertices. Therefore, several buses should
be used, in general, to connect two vertices. The diameter
of the hypergraph that models the network measures the
transmission delay in the communications. Therefore, it
is interesting to find families of hypergraphs, directed or
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not, with a minimum diameter for all fixed values of the
maximum vertex degree and bus size.

We present here a new method to construct directed
hypergraphs with a minimum diameter. This method is
an adaptation of the partial line digraph technique [7] to
hyperdigraphs and can be seen as a generalization of the
line hyperdigraph technique [2].

The iteration of the line hyperdigraph technique pro-
vides hyperdigraphs with a large order for fixed values of
the diameter, vertex degree, and bus size. Besides, iter-
ated line hyperdigraphs have good properties in relation
to the fault-tolerance of bus networks [6]. In particular,
de Bruijn and Kautz hyperdigraphs [1] are iterated line
hyperdigraphs.

We introduce in this paper the partial line hyperdi-
graph technique, which makes it possible to construct
hyperdigraphs with a minimum diameter for any num-
ber of vertices and fixed values of the maximum vertex
degree and bus size. We study the connectivity and the
expandability of partial line hyperdigraphs. The expand-
ability is related to the capability of a network to increase
its number of processors without loss of performance [7].
The relation between line and partial line hyperdigraphs
is also studied. As a consequence, we obtain that partial
line hyperdigraphs constructed from iterated line hyper-
digraphs, such as Kautz hyperdigraphs, have a minimum
diameter, maximum connectivity, and good expandabil-
ity, which are all very good properties in relation to the
design of directed bus networks.

Some definitions and notation are given in the next
section. The partial line hyperdigraph technique is pre-
sented in Section 3. Some basic properties of partial line
hyperdigraphs are given in this section. The connectiv-
ity and the expandability of partial line hyperdigraphs
are studied in Sections 4 and 5, respectively. In Section
6, we apply the partial line hyperdigraph technique to
Kautz hyperdigraphs to obtain a new family of hyperdi-
graphs with a minimum diameter. Finally, in Section 7,
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we prove a conjecture by J.-C. Bermond and F. Ergincan
in relation to the characterization of line hyperdigraphs.

2. PRELIMINARIES

A directed hypergraph H, also called a hyperdigraph
for short, is a pair (V(H), E(H)), where V(H) is a
nonempty set of vertices and E(H) is a set of ordered
pairs of nonempty subsets of V(H), called hyperarcs.
The order of H, denoted by n(H), is the number of ver-
tices, n(H) = |V(H)|, and m(H) will denote the num-
ber of hyperarcs. If E = (E−, E+) is a hyperarc, we say
that E− and E+ are, respectively, the in-set and out-set
of E. The cardinalities of the in-set and the out-set of
a hyperarc E = (E−, E+) are, respectively, the in-size,
s−(E) = |E−|, and the out-size, s+(E) = |E+|, of E. The
in-degree, d−(v), of a vertex v is the number of hyperarcs
containing v in the out-set, and the out-degree, d+(v), is
the number of hyperarcs such that v is in their in-sets.
The maximum out-size of a hyperdigraph H is defined
by

s+(H) = max{|E+| : E ∈ E(H)}.

The maximum in-size and the minimum in- and out-size
are defined analogously. Similarly, the maximum out-
degree of H is

d+(H) = max{d+(v) : v ∈ V(H)}.

Equally, one can define the maximum in-degree and the
minimum in- and out-degree. A hyperdigraph is d-regular
if d−(v) = d+(v) = d for any vertex v ∈ V(H). Similarly,
a hyperdigraph is s-uniform if the out-size and the in-size
of all its hyperarcs are equal to s.

A path of length k from a vertex u to a vertex v in H
is an alternating sequence of vertices and hyperarcs u =
v0, E1, v1, E2, v2, . . . , Ek, vk = v such that vi ∈ E−

i+1, (i =
0, . . . , k − 1) and vi ∈ E+

i , (i = 1, . . . , k). The distance
from u to v is the length of a shortest path from u to
v. The diameter of H, D(H), is the maximum distance
between every pair of vertices of H.

A hyperdigraph is connected if there exists at least
one path between any pair of vertices. The vertex-
connectivity, κ(H), of a hyperdigraph H is the minimum
number of vertices that have to be removed from H to
obtain a disconnected or trivial hyperdigraph (i.e., one
having a single vertex). The hyperarc-connectivity, λ(H),
is defined similarly.

The vertices of the dual hyperdigraph, H∗, of a hy-
perdigraph H coincide with the hyperarcs of H, that is,
V(H∗) = E(H), and its hyperarcs are in one-to-one cor-
respondence with the vertices of H. For every vertex v of
H, there is a hyperarc V = (V−, V+) of H∗ such that, for
any E ∈ V(H∗) = E(H), E ∈ V− if and only if v ∈ E+,
and E ∈ V+ if and only if v ∈ E−.

The underlying digraph of a hyperdigraph H is the
digraph Ĥ = (V(Ĥ), A(Ĥ)), where V(Ĥ) = V(H) and

(u, v) ∈ A(Ĥ) if and only if there exists E ∈ E(H) such
that u ∈ E− and v ∈ E+, that is, there is an arc from a
vertex u to a vertex v in Ĥ if and only if there is a hyper-
arc joining u to v in H. Therefore, paths in Ĥ and H are
in one-to-one correspondence and, hence, D(Ĥ) = D(H)
and κ(Ĥ) = κ(H). If there is more than one hyperarc
joining two vertices in H, then Ĥ will have multiple arcs
between these two vertices. Therefore, Ĥ is, in general,
a multidigraph.

The line hyperdigraph of H = (V(H), E(H)) is defined
in [2] as the hyperdigraph LH = (V(LH), E(LH)), where

V(LH) =
⋃

E∈E(H)

{(uEv) : u ∈ E−, v ∈ E+}

and

E(LH) =
⋃

v∈V(H)

{(EvF) : v ∈ E+, v ∈ F−},

with (EvF)− = {(wEv) : w ∈ E−} and (EvF)+ = {(vFw) :
w ∈ F+}. The next two propositions were proved by
Bermond and Ergincan in [2].

Proposition 2.1. Let H be a hyperdigraph. The under-
lying digraph of LH coincides with the line digraph LĤ.
Besides, if H is a digraph, LH coincides with the line
digraph of H.

Proof. Observe that there is a one-to-one correspon-
dence between the arcs of the underlying digraph Ĥ and
the set V(LH) of vertices of the line hyperdigraph LH,
that is, there exists a one-to-one correspondence between
the sets of vertices of the digraphs LĤ and L̂H. It is easy
to check that this mapping is, in fact, a digraph isomor-
phism. In the particular case that H is a digraph, we
have that Ĥ = H and, hence, the line hyperdigraph of H
coincides with the line digraph of H.

Proposition 2.2. Let H be a hyperdigraph. The dual
of the line hyperdigraph of H is isomorphic to the line
hyperdigraph of the dual hyperdigraph of H, that is,
(LH)∗ � LH∗.

Proof. Observe that

V((LH)∗) = E(LH) =
⋃

v∈V(H)

{(EvF) : v ∈ E+, v ∈ F−}

and

E((LH)∗) = V(LH) =
⋃

E∈E(H)

{(uEv) : u ∈ E−, v ∈ E+}.

On the other hand,

V(LH∗) =
⋃

V∈E(H∗)

{(EVF) : E ∈ V−, F ∈ V+}

and

E(LH∗) =
⋃

E∈V(H∗)

{(UEV) : E ∈ U+, E ∈ V−}.
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It is obvious that there exist natural one-to-one mappings
φ : V((LH)∗) → V(LH∗) and Φ : E((LH)∗) → E(LH∗),
defining an isomorphism between (LH)∗ and LH∗.

3. PARTIAL LINE HYPERDIGRAPHS

The main definitions and some basic properties about
the partial line hyperdigraph technique are given in this
section.

Let H = (V(H), E(H)) be a connected hyperdigraph.
To define a partial line hyperdigraph of H, we consider

• A set W ⊂ V(LH) of vertices of LH such that, for
any v ∈ V(H), there exists in W at least one vertex
of the form uEv.

• A mapping φ, which is defined as follows: For every
pair (E, vFw), where vFw is a vertex LH and E is a
hyperarc of H such that v ∈ E+ and there exist a
vertex uEv ∈ W,

φ(E, vFw) =
{

vFw if vFw ∈ W
v′F′w ∈ W otherwise,

where v′ and F′ are chosen arbitrarily.

The partial line hyperdigraph LH = L(H, W, φ) has
the set of vertices V(LH) = W and the set of hyperarcs

E(LH) = {EvF : EvF ∈ E(LH)

such that there exists uEv ∈ W},

where (EvF)− = {uEv ∈ W : u ∈ E−} and (EvF)+ =
{φ(E, vFw) : w ∈ F+}.

Notice that there exist as many partial line hyperdi-
graphs of H as different pairs (W, φ) with the above
properties. In particular, if H has order N, we can con-
struct a partial line hyperdigraph of H with order N′ for
any N′ = N, N+1, . . . , |V(LH)|. Observe that LH = LH
if N′ = |V(LH)|. Besides, in the particular case that H
is a digraph, LH coincides with the partial line digraph
defined in [7]. So, the partial line hyperdigraph technique
is a generalization of the line hyperdigraph [2] and the
partial line digraph techniques [7].

Example. Let H = (V(H), E(H)) be the hyperdi-
graph with vertices V(H) = {0, 1, 2, 3, 4, 5} and hyper-
arcs E(H) = {E0, E1, E2}, where

E−
0 = {0, 3} E+

0 = {4, 5}
E−

1 = {1, 4} E+
1 = {2, 3}

E−
2 = {2, 5} E+

2 = {0, 1}.

We are going to construct a partial line hyperdigraph of
H with a set of vertices

W = {0E04, 0E05, 1E13, 2E20, 2E21,

3E05, 4E12, 4E13, 5E21} ⊂ V(LH).

Observe that V(LH) = W ∪ {1E12, 3E04, 5E20}, that
is, we have chosen nine vertices in V(LH), which has 12
elements. At this point, we only have to define a func-

tion φ to construct a partial line hyperdigraph LH =
L(H, W, φ). According to the definition, the only possi-
ble choice for this function is

φ(E2, 1E12) = 4E12, φ(E1, 3E04) = 0E04,

φ(E0, 5E20) = 2E20,

and φ(E, vFw) = vFw for every vFw ∈ W and v ∈
E+. In this case, the partial line hyperdigraph LH =
L(H, W, φ) has the set of vertices V(LH) = W and the
set of hyperarcs

E(LH) = {E04E1, E05E2, E12E2, E13E0, E20E0, E21E1},

where

(E04E1)− = {0E04} (E04E1)+ = {4E12, 4E13}
(E05E2)− = {0E05, 3E05} (E05E2)+ = {2E20, 5E21}
(E12E2)− = {4E12} (E12E2)+ = {2E20, 2E21}
(E13E0)− = {1E13, 4E13} (E13E0)+ = {0E04, 3E05}
(E20E0)− = {2E20} (E20E0)+ = {0E04, 0E05}
(E21E1)− = {2E21, 5E21} (E21E1)+ = {4E12, 1E13}.

The next proposition relates the out-degrees and out-
sizes of H and LH. As a consequence, the maximum
and minimum out-degree and out-size of LH coincide
with those of H. Observe that this does not occur with
the in-degrees and in-sizes.

Proposition 3.1. Let LH = L(H, W, φ) be a partial
line hyperdigraph of H. For any vertex (uEv) and any
hyperarc (EvF) of LH,

• d+
LH(uEv) = d+

H(v),
• s+

LH(EvF) = s+
H(F).

We prove in the next proposition that the underlying
digraph of LH is a partial line digraph of the underlying
digraph of H.

Proposition 3.2. Let LH = L(H, W, φ) be a partial
line hyperdigraph of a connected hyperdigraph H. Then,
there exist a set Ŵ of arcs of the underlying digraph Ĥ
and a mapping φ̂ such that

L̂H � LĤ = L(Ĥ, Ŵ, φ̂).

Proof. To simplify the proof, let us suppose that Ĥ
is a simple digraph. The proof can be easily adapted
to the case that Ĥ is a multidigraph. Let Ŵ be the set
of arcs (u, v) ∈ A(Ĥ) such that there exists E ∈ E(H)
with (uEv) ∈ W. For any pair ((u, v), (v, w)) of arcs of
Ĥ with (u, v) ∈ Ŵ, we define φ̂((u, v), (v, w)) = (v′, w) ∈
Ŵ, where φ(E, vFw) = v′F′w and (uEv) ∈ W. It is not
difficult to check that L̂H � L(Ĥ, Ŵ, φ̂).

As a direct consequence of this proposition, some
properties of partial line hyperdigraphs can be derived
from properties of partial line digraphs. For instance,
we obtain in this way the diameter of partial line hyper-
digraphs.
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Proposition 3.3. Let H be a hyperdigraph with order
N and diameter D. Let LH be a partial line digraph
of H with order N′ > N. Then, the diameter of LH is
D(LH) = D + 1.

Proof. This result is proved in [7] for partial line
digraphs. Therefore, using Proposition 3.2 and the prop-
erties of the underlying digraph of a hyperdigraph,

D(LH) = D(L̂H) = D(LĤ) = D(Ĥ) + 1 = D(H) + 1.

We present next the relation between line and par-
tial line hyperdigraphs. We prove that some partial line
hyperdigraphs of iterated line hyperdigraphs are also it-
erated line hyperdigraphs.

Theorem 3.4. Let H be a connected hyperdigraph and
let LH be the line hyperdigraph of H. Let LH =
L(H, W, φ) be a partial line hyperdigraph of H. Then,
there exists LLH = L(LH, W1, φ1), a partial line hy-
perdigraph of LH, such that LLH � LLH.

Proof. The vertices of LLH are of the form
(uEv)(EvF)(v′F′w), where uEv ∈ W and v′F′w =
φ(E, vFw). The vertices of L2H can be identified with
paths of length 2 in H, that is, they are of the form
(uEv)(EvF)(vFw) and can be denoted by uEvFw. Let us
consider

W1 = {uEvFw ∈ V(L2H) : uEv ∈ W}.

For any pair (EvF, vFwGx), where vFwGx is a vertex
of L2H and EvF is a hyperarc of LH such that there
exists uEvFw ∈ W1, we define φ1(EvF, vFwGx) =
v′F′wGx, where v′F′w = φ(E, vFw). It is not diffi-
cult to check that the mappings Φ : W1 → V(LLH)
and Ψ : E(LLH) → E(LLH) defined, respectively,
by Φ(uEvFw) = (uEv)(EvF)(v′F′w) and Ψ(EvFwG) =
(EvF)(v′F′w)(F′wG), where v′F′w = φ(E, vFw), define
an isomorphism between L(LH, W1, φ1) and LLH.

Corollary 3.5. Let H be a connected hyperdigraph
and let LkH be an iterated line hyperdigraph of H. Let
LH = L(H, W, φ) be a partial line hyperdigraph of H.
Then, there exists LLkH = L(LkH, W1, φ1), a partial
line hyperdigraph of LkH, such that LkLH � LLkH.

Let H be a hyperdigraph with order N and mini-
mum in-degree d. Observe that, for any integer N′ with
dN ≤ N′ ≤ |V(LH)|, we can choose W and φ in
such a way that E(LH) = {EvF : EvF ∈ E(LH)} and
φ(E, vFw) = v′Fw. In this situation, the hyperarcs of
LH are in one-to-one correspondence with the hyper-
arcs of the line hyperdigraph LH. Besides, all vertices in
(EvF)+ are of the form v′Fw.

4. CONNECTIVITY

A hyperdigraph H has no redundant short paths when
there is at most one path of length one or two between

every pair of vertices (different or not) of H. Note that
under this restriction we can still work with interesting
hyperdigraphs, for instance, the generalized de Bruijn
and Kautz hyperdigraphs.

Lemma 4.1. Let H be a hyperdigraph. Then, H has no
redundant short paths if and only if Ĥ has no redundant
short paths.

Theorem 4.2. Let H be a connected hyperdigraph with-
out redundant short paths. Let LH = L(H, W, φ) be a
partial line hyperdigraph of H. Let d̂ be the minimum
degree of the underlying digraph L̂H. Then,

κ(LH) ≥ min{κ(H), d̂}.

Proof. By Lemma 4.1, Ĥ has no redundant short
paths. Then, from the bound on the connectivity of par-
tial line digraphs given in [7] and Proposition 3.2, we
have κ(LĤ) ≥ min{κ(Ĥ), d̂}. The proof is concluded
by taking into account that the vertex-connectivities of
a hyperdigraph and its underlying digraph are equal.

To find bounds on the hyperarc-connectivity, we need
the following result of [2]:

Lemma 4.3. Let H be a hyperdigraph with hyperarc-
connectivity λ. Then, every vertex v in H is on λ hyperarc-
disjoint cycles.

Theorem 4.4. Let H be a connected hyperdigraph with
order N and minimum degree d. Let LH = L(H, W, φ),
where |W| ≥ dN, be a partial line hyperdigraph of H
such that its hyperarcs are in one-to-one correspondence
with the hyperarcs of the line hyperdigraph LH. Then, the
hyperarc-connectivity of LH satisfies λ(LH) ≥ λ(H).

Proof. It is enough to prove that there exist λ = λ(H)
hyperarc-disjoint paths between any pair of different ver-
tices of LH. Let (uEv), (xFy) be two different vertices
of LH. We consider two cases:

1. If v ≠ x, we have λ hyperarc-disjoint paths from v to
x in H:

Pi = v, Ei
1, vi

1, Ei
2, vi

2, . . . , Ei
ni−1, vi

ni−1, Ei
ni , x,

where i = 1, . . . , λ. Each path Pi gives rise to a path
from (uEv) to (xFy), LPi in LH, defined by

LPi = (uEv), (EvEi
1), (v′Ei

1vi
1), (Ei

1vi
1Ei

2), ((vi
1)′Ei

2vi
2), . . . ,

((vi
ni )

′Ei
ni x), (Ei

ni xF), (xFy).

It is not difficult to see that the paths LPi are
hyperarc-disjoint.

2. If v = x, we proceed as before but with hyperarc-
disjoint cycles in H. By Lemma 4.3, if the hyperarc-
connectivity is λ, each vertex of H is in λ hyperarc-
disjoint cycles. In the same way as we do with paths
Pi, we can obtain λ paths in LH from these cycles
in H. Again, since the original cycles are hyperarc-
disjoint, these new paths are hyperarc-disjoint also.
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5. EXPANDABILITY

The concept of expandability is related to the capa-
bility of a network to increase its number of proces-
sors without loss of performance [7]. Given two hyper-
digraphs H and H′ with, respectively, N and N′ vertices,
N ≤ N′, we define the index of expandability of H to
H′, e(H, H′), as the minimum number of hyperarcs that
have to be modified in H in order to obtain H′ by adding
N′ − N vertices and some appropriate hyperarcs, if nec-
essary.

If H is a hyperdigraph, LNH will denote a partial
line hyperdigraph of H with order N. We prove next
that any hyperdigraph LNH has good expandability to
some LN+1H.

Theorem 5.1. Let H be a connected hyperdigraph with
maximum degree d and let LNH = L(H, W, φ) be a
partial line hyperdigraph of H, where |V(H)| ≤ N ≤
|V(LH)| − 1. Then, there exists a partial line hyperdi-
graph LN+1H = L(H, W′, φ′) such that the index of
expandability of LNH to LN+1H satisfies

e(LNH, LN+1H) ≤ 2d.

Proof. The hyperdigraph LN+1H can be obtained
from LNH by the following algorithm:

1. Choose a vertex (uEv) of LH which is not in W. Such
a vertex exists because |W| ≤ |V(LH)| − 1.

2. Add the vertex (uEv) to LNH, that is, consider W′ =
W ∪ {uEv}.

3. For every hyperarc of LNH denoted by FuE, replace
in their out-sets the vertex u′E′v = φ(F, uEv) by the
vertex uEv = φ′(F, uEv).

4. For every hyperarc F of H with v ∈ F−,

• If EvF is not a hyperarc of LNH, define
φ′(E, vFw) for every w ∈ F+ and add the hy-
perarc EvF to LNH, where (EvF)− = {uEv}
and (EvF)+ = {φ′(E, vFw) : w ∈ F+}.

• If EvF is a hyperarc of LNH, add the vertex
uEv to its in-set.

Observe that the hyperarcs of LNH are only modified
in steps 3 and 4 of the algorithm. Therefore, at most
d−

H(u) + d+
H(v) hyperarcs are modified.

The above proof gives an algorithm to expand partial
line hyperdigraphs. With a few changes, it can be used
to decrease the number of vertices, that is, to construct
LNH from LN+1H.

If H is 1-uniform, only the out-sets of existing hyper-
arcs have to be modified in the above algorithm. There-
fore, the expandability of partial line digraphs satisfies
e(LNH, LN+1H) ≤ d, where d is the maximum degree
of H. This result was proved in [7].

In some applications, it could also be useful to com-
pute the number of vertex-to-vertex connections that
have to be modified to expand the hyperdigraph. The next

proposition is a direct consequence of the results about
the expandability of partial line digraphs given in [7].

Proposition 5.2. Let H be a connected hyperdigraph
with maximum degree d and maximum size s. Let LNH =
L(H, W, φ) be a partial line hyperdigraph of H, where
|V(H)| ≤ N ≤ |V(LH)| − 1. Then, there exists a par-
tial line hyperdigraph LN+1H = L(H, W′, φ′) such that
the number of connections that have to be modified to
transform LNH to LN+1H is at most ds.

6. PARTIAL LINE HYPERDIGRAPHS
WITH MINIMUM DIAMETER

A Moore-like bound for the order of a hyperdigraph
with diameter D, maximum out-degree d, and maximum
out-size s was given in [4]:

N ≤ 1 + (ds) + (ds)2 + · · · + (ds)D =
(ds)D+1 − 1

ds − 1
.

A lower bound for the diameter of a hyperdigraph with
order N, maximum out-degree d, and maximum out-size
s can be easily deduced:

D ≥ Dmin(d, s, N) = (logds(N(ds − 1) + 1)) − 1.

Let H be a hyperdigraph with order N, maximum out-
degree d, maximum out-size s, and minimum diameter
D = Dmin(d, s, N). The partial line hyperdigraphs LH
have maximum out-degree d, maximum out-size s, order
N′, where N < N′ ≤ Nds, and diameter D(LH) = D+1.
Therefore, the diameter of LH exceeds by at most one
the lower bound, that is, D(LH) ≤ Dmin(d, s, N′) + 1.

If, in particular, we apply the partial line hyperdigraph
technique to Kautz hyperdigraphs, a generalization of
Kautz digraphs that was introduced in [1], we obtain a
new family of hyperdigraphs with a minimum or almost
minimum diameter. Besides, these hyperdigraphs have
other interesting properties (connectivity, expandability)
that make them suitable to be considered as models for
bus interconnection networks.

We recall here the definition and some basic proper-
ties of Kautz hyperdigraphs. See [1, 2] for proofs and
more information about that family. Let N, d, s, m be in-
tegers such that dN ≡ 0(modm) and sm ≡ 0(modN).
The sets of vertices and hyperarcs of the generalized
Kautz hyperdigraph H = GK(d, N, s, m) are, respectively,
V(H) = ZN and E(H) = Zm. The incidences are given
by

• u ∈ E− if and only if E ≡ du + α(modm), where
0 ≤ α ≤ d − 1

• v ∈ E+ if and only if u ≡ −sE − β(modN), where
1 ≤ β ≤ s.

The out-degree of any vertex of H is equal to d and all
hyperarcs have out-size s. H is d-regular and s-uniform
if dN = sm. The underlying digraph of the generalized
Kautz hyperdigraph H = GK(d, N, s, m) is a general-
ized Kautz digraph or a Imase–Itoh digraph [11] with
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degree ds and order N, that is, Ĥ � GK(ds, N). There-
fore, the diameter of H exceeds the lower bound by at
most one. The line hyperdigraph of a generalized Kautz
hyperdigraph is another generalized Kautz hyperdigraph:
LGK(d, N, s, m) � GK(d, dsN, s, dsm).

In particular, if we take N = (ds)D + (ds)D−1 and
m = d2((ds)D−1 + (ds)D−2), where D ≥ 2, we obtain the
Kautz hyperdigraph

H = HK(d, s, D) = GK(d, (ds)D

+(ds)D−1, s, d2((ds)D−1 + (ds)D−2)),

whose underlying digraph is Ĥ � K(ds, D), the
Kautz digraph [8, 12] with degree ds and diameter D.
Kautz hyperdigraphs HK(d, s, D) are d-regular and s-
uniform, and their order is very close to the Moore-
like bound for their degree d, size s, and diameter
D. Besides, they are maximally connected and have a
small fault-diameter [6]. Finally, observe that Kautz hy-
perdigraphs HK(d, s, D) are iterated line hyperdigraphs:
HK(d, s, D) = LD−2GK(d, (ds)2 + ds, s, d2(ds + 1)) =
LD−2HK(d, s, 2).

A new family of hyperdigraphs with a minimum
or almost minimum diameter is obtained by applying
the partial line hyperdigraph technique to Kautz hy-
perdigraphs. For any values of d, s ≥ 1 and D ≥ 2
and for any integer N with (ds)D + (ds)D−1 ≤ N ≤
(ds)D+1+(ds)D, let us consider a partial line hyperdigraph
LNHK(d, s, D) = L(HK(d, s, D), WN, φN). The hyperdi-
graph LNHK(d, s, D) has maximum out-degree d, maxi-
mum out-size s, diameter D + 1 and, of course, order N.
Therefore, if

(ds)D+1 − 1
ds − 1

< N ≤ (ds)D+1 + (ds)D,

the hyperdigraph LNHK(d, s, D) has a minimum diame-
ter. Otherwise, the diameter exceeds the lower bound by
one.

Since Kautz hyperdigraphs are maximally connected,
the vertex-connectivity of LNHK(d, s, D) is equal to
the minimum degree of its underlying digraph, and the
hyperarc-connectivity is equal to d if N ≥ d((ds)D +
(ds)D−1).

Another interesting property of the hyperdigraphs
LNHK(d, s, D) is derived from the results about the ex-
pandability of partial line hyperdigraphs given in Section
5. Effectively, modifying at most 2d hyperarcs, we can
add a vertex to any hyperdigraph LNHK(d, s, D) to ob-
tain another hyperdigraph LN+1HK(d, s, D) with a min-
imum or almost minimum diameter.

If N = (ds)kn, the set WN and the mapping φN

can be chosen so that the partial line hyperdigraph
LNHK(d, s, D) = L(HK(d, s, D), WN, φN) is an iterated
line hyperdigraph. In effect, from Corollary 3.5,

LkLnHK(d, s, D − k) � LNLkHK(d, s, D − k)

� LNHK(d, s, D),

for an adequate choice of WN and φN.

7. ON A CONJECTURE BY BERMOND
AND ERGINCAN

A conjecture by Bermond and Ergincan [2] about the
characterization of line hyperdigraphs is proved to be
true in this section.

Theorem 7.1. Let H be a hyperdigraph. Then, H is a
line hyperdigraph if and only if its underlying digraph,
Ĥ, and the underlying digraph of its dual, Ĥ∗, are both
line digraphs, that is, there exists a hyperdigraph H1 such
that H � LH1 if and only if there exist two digraphs G

and G∗ such that Ĥ � LG and Ĥ∗ � LG∗.

Proof. Since (LH)∗ is isomorphic to LH∗ and L̂H is
isomorphic to LĤ [2], if H � LH1, then Ĥ � LĤ1 and
Ĥ∗ � LĤ∗

1 .
If Ĥ is a line digraph, its vertices can be labeled with

ordered pairs of vertices of some other digraph, let us
say G1, where Ĥ = LG1. Moreover, we can assure that
any two vertices u0u1, v0v1 are adjacent in Ĥ if and only
if u1 = v0.

Analogously, if Ĥ∗ is a line digraph, the set of vertices
of Ĥ∗ can be labeled with ordered pairs of vertices of
some other digraph, let us say G2, such that Ĥ∗ = LG2.
Besides, two vertices of Ĥ∗, EiFi and EjFj, are adjacent
if and only if Fi = Ej. Then, by the definition of Ĥ∗,
there exists a vertex v of H belonging to the out-set of
the hyperarc labeled EiFi, (EiFi)+ and to the in-set of the
hyperarc with label EjFj, (EjFj)−, if and only if Fi = Ej.

Now, we modify the labeling for the vertices of H,
introducing the labeling for its hyperarc set, that is, if a
vertex labeled with u0u1 is in (EjFj)−, we relabel it with
u0Eju1, and if the vertex with label v0v1 is in (EjFj)+,
we relabel it with v0Fjv1. Note that all the hyperarcs are
relabeled since there exists at least one vertex in their in-
or out-sets. Moreover, the new labels are unique, because
if a vertex belongs to (EpFp)+ and to (EqFq)−, then Eq =
Fp, because Ĥ∗ is a line digraph.

Since we have defined a labeling in H with the line
hyperdigraph conditions, H is a line hyperdigraph.

The next corollary is a direct consequence of Theorem
7.1:

Corollary 7.2. Let H be a hyperdigraph and k be a pos-
itive integer. Then, H is a k-iterated line hyperdigraph if
and only if its underlying digraph, Ĥ, and the underlying
digraph of its dual, Ĥ∗, are both k-iterated line digraphs.
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