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Abstract

Directed hypergraphs are used to model networks whose nodes are connected by directed buses.
We study in this paper two parameters related to the fault-tolerance of directed bus networks:
the connectivity and the fault-diameter of directed hypergraphs. Some bounds are given for those
parameters. As a consequence, we obtain that de Bruijn-Kautz directed hypergraphs and, more
generally, iterated line directed hypergraphs provide models for highly fault-tolerant directed bus
networks. ? 2002 Elsevier Science B.V. All rights reserved.

Keywords: Directed hypergraphs; Bus interconnection networks; Connectivity; Fault-tolerant
interconnection networks

1. Introduction

A bus network consists in a set of processors and a set of buses providing com-
munication channels between subsets of processors. Bus networks are represented by
hypergraphs. If the buses are unidirectional, directed hypergraphs, called hyperdigraphs
for short, are considered. See [2,3,8] for more details about this modelization.

Some basic requirements related to the design of bus interconnection networks lead
to the search of families of hyperdigraphs with a good relation between their order and
diameter for any given values of the maximum vertex-degree and bus-size. De Bruijn
and Kautz hyperdigraphs [3] and, more generally, iterated line hyperdigraphs [1] are
some of such families.

There exist two basic parameters that are generally considered for graphs and hyper-
graphs in relation to the fault-tolerance of interconnection networks [12]: the connec-
tivity and the fault-diameter. The connectivity is the minimum number of vertices or
edges that have to be deleted in order to disconnect the graph or hypergraph. The fault
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diameter is the maximum diameter of the subgraphs obtained by removing a given
number of vertices or edges. In this paper, we study these parameters for directed hy-
pergraphs. We present some bounds on those parameters. Some interesting properties
of de Bruijn and Kautz hyperdigraphs and iterated line hyperdigraphs are derived from
those bounds. The results we present here generalize some previous results about the
connectivity and the fault-diameter of digraphs [9,5,14,6].

The main deDnitions and the notation that will be used in the following are given in
Section 2. Some basic results about the connectivity of hyperdigraphs are presented in
Section 3. Some properties about the vertex-connectivity and the vertex-fault-diameter
of hyperdigraphs are derived from properties of these parameters for digraphs in
Section 4. Previous results about digraphs cannot be directly applied to study the con-
nectivity and fault-diameter when one considers the deletion of hyperarcs. This case is
studied in Sections 5 and 6 by introducing some new parameters related to the bipartite
representation of hyperdigraphs. Finally, some results about the connectivity and the
fault-diameter of de Bruijn and Kautz hyperdigraphs and iterated line hyperdigraphs
are given in Section 7.

2. Preliminaries

A directed hypergraph, also called hyperdigraph for short, H is a pair (V(H);E(H)),
where V(H) is a non-empty set of vertices and E(H) is a set of ordered pairs of
non-empty subsets of V(H), called hyperarcs. The order of H , denoted by n(H), is
the number of vertices, n(H)=|V(H)|, and m(H) will denote the number of hyperarcs.
If E=(E−; E+) is an hyperarc, we say that E− and E+ are, respectively, the in-set and
out-set of E. The cardinalities of the in-set and the out-set of a hyperarc E=(E−; E+)
are, respectively, the in-size, s−(E) = |E−|, and the out-size, s+(E) = |E+|, of E. The
in-degree, d−(v), of a vertex v is the number of hyperarcs containing v in the out-set,
and the out-degree, d+(v), is the number of hyperarcs such that v is in their in-sets.
The minimum out-size of a hyperdigraph H is deDned by

s+(H) = min{|E+|: E ∈ E(H)}:
The minimum in-size, and the maximum in- and out-size are deDned analogously.
Similarly, the minimum out-degree of H is

d+(H) = min{d+(v): v ∈ V(H)}:
Equally, one can deDne the maximum in-degree, d−(H). The minimum degree of H
is d(H) = min{d+(H); d−(H)}. The maximum in- and out-degree and the maximum
degree are deDned analogously. A hyperdigraph is d-regular if d−(v) = d+(v) = d for
any vertex v ∈ V(H). Similarly, a hyperdigraph is s-uniform if the out-size and the
in-size of all its hyperarcs are equal to s.

A path of length k from a vertex u to a vertex v in H is an alternating se-
quence of vertices and hyperarcs u= v0; E1; v1; E2; v2; : : : ; Ek ; vk = v such that vi ∈ E−

i+1;



D. Ferrero, C. Padr3o / Discrete Applied Mathematics 117 (2002) 15–26 17

(i = 0; : : : ; k − 1) and vi ∈ E+
i ; (i = 1; : : : ; k): The distance from u to v is the length

of a shortest path from u to v. The diameter of H , D(H), is the maximum distance
between every pair of vertices of H .

A hyperdigraph is connected if there exists at least one path between any pair of
vertices. The vertex-connectivity, �(H), of a hyperdigraph H is the minimum number
of vertices that have to be removed from H to obtain a non-connected or trivial
hyperdigraph (i.e., with only one vertex). The hyperarc-connectivity, �(H), is deDned
similarly.

The vertex-fault-diameter, Dw(H), of a hyperdigraph H , is the maximum diameter
of the hyperdigraphs obtained when w arbitrary vertices are removed from H . The
hyperarc-fault-diameter, D′

w(H), is deDned similarly.
The vertices of the dual hyperdigraph, H∗, of a hyperdigraph H coincide with the

hyperarcs of H , that is, V(H∗) = E(H), and its hyperarcs are in one-to-one cor-
respondence with the vertices of H . For every vertex v of H , there is an hyperarc
V = (V−; V+) of H∗ such that, for any E ∈ V(H∗) = E(H); E ∈ V−, if and only if,
v ∈ E+, and E ∈ V+, if and only if, v ∈ E−.

The underlying digraph of a hyperdigraph H is the digraph Ĥ = (V(Ĥ);A(Ĥ)),
where V(Ĥ) = V(H) and (u; v) ∈ A(Ĥ), if and only if, there exists E ∈ E(H) such
that u ∈ E− and v ∈ E+. That is, there is an arc from a vertex u to a vertex v in Ĥ ,
if and only if, there is a hyperarc joining u to v in H . Therefore, paths in Ĥ and H
are in one-to-one correspondence and, hence, D(Ĥ)=D(H) and �(Ĥ)=�(H). If there
are more than one hyperarc joining two vertices in H , then Ĥ will have multiple arcs
between these two vertices. Therefore, Ĥ is, in general, a multidigraph.

The bipartite representation of a hyperdigraph H is a bipartite digraph R=R(H) =
(V (R); A(R)) with vertices V (R) = V0(R) ∪ V1(R), where V0(R) = V(H) and V1(R) =
E(H), and arcs A(R) = {(u; E)|u ∈ V0; E ∈ V1; u ∈ E−} ∪ {(F; v)|v ∈ V0; F ∈ V1; v ∈
F+}: Observe that, if u; v are two vertices of H , a path of length h from u to v in H
corresponds to a path of length 2h in R(H) and then, dR(u; v) = 2dH (u; v).

The line hyperdigraph of H = (V(H);E(H)) is deDned in [1] as the hyperdigraph
LH = (V(LH);E(LH)), where

V(LH) =
⋃

E∈E(H)

{(uEv): u ∈ E−; v ∈ E+}

and

E(LH) =
⋃

v∈V(H)

{(EvF): v ∈ E+; v ∈ F−};

with (EvF)− = {(wEv) : w ∈ E−} and (EvF)+ = {(vFw) : w ∈ F+}. Note that if H is
a digraph, LH coincides with the line digraph of H . Besides, the underlying digraph
of LH coincides with the line digraph LĤ . The iteration of the line hyperdigraph
technique provides a method to Dnd hyperdigraphs with a large number of vertices
for their values of the degree, bus size and diameter. In fact, de Bruijn and Kautz
hyperdigraphs are iterated line hyperdigraphs [1]. We refer to [1] for other properties
of the line hyperdigraph technique.
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3. Basic results on connectivity

We say that a hyperdigraph H is simple if its underlying digraph Ĥ has no parallel
arcs. That is, a hyperdigraph H is simple, if and only if, there does not exist any pair
of hyperarcs E1, E2 of H with E−

1 ∩ E−
2 �= ∅ and E+

1 ∩ E+
2 �= ∅.

Proposition 3.1. Let H be a hyperdigraph. Then; its line digraph LH is a simple
hyperdigraph.

Proof. Let E, F be hyperarcs of LH such that E−∩F− �= ∅. Suppose that E=(E1v1F1)
and F=(E2v2F2). If E−∩F− �= ∅, then E1=E2 and v1=v2. Then, E+={(v1F1wi): wi ∈
F+

1 } and F+={(v1F2zi): zi ∈ F+
2 }. If E �= F , it must be F1 �= F2 and then, E+∩F+=∅.

Let H be a hyperdigraph with minimum degree d and minimum size s. We denote
by d̂ = d(Ĥ) the minimum degree of the underlying digraph Ĥ . Let � and � be,
respectively, the vertex and hyperarc-connectivities of H and let �̂ and �̂ be the vertex
and arc-connectivities of the underlying digraph Ĥ .

It is clear that � = �̂ and, from the properties of the connectivities of digraphs,
�̂6�̂6d̂. On the other hand, it is obvious that �6d.

If the hyperdigraph H is s-uniform, we have that d̂6ds. If, besides, H is simple,
d̂ = ds. Then, in the uniform case, � = �̂6�̂6d̂6ds. Another relation between the
connectivities of a hyperdigraph is given in next proposition.

Proposition 3.2. Let H = (V(H);E(H)) be an s-uniform hyperdigraph with vertex-
connectivity �; hyperarc-connectivity � and order n¿ 2�s. Then; �6�s.

Proof. Let F = {E1; : : : ; E�}⊂E(H) be a disconnecting set of H . Let us consider
F− =E−

1 ∪ · · · ∪E−
� and F+ =E+

1 ∪ · · · ∪E+
� . Since the order of H is n¿ 2�s, there

is a vertex z �∈ F− ∪F+. Let us consider two vertices x; y ∈ V(H) such that there is
no path from x to y in H −F. Then, all paths from x to z contain an internal vertex
in F+ or all paths from z to y pass through F−. If not, we could Dnd a path from
x to y in H − F. Therefore, one of the hyperdigraphs H − F− or H − F+ is not
connected and, hence, �(H)6�s.

We say that a hyperdigraph H is maximally connected if �= d̂ and �=d. Note that,
if � = ds and Proposition 3.2 holds, � = d. In this case, a hyperdigraph is maximally
connected if and only if � = ds.

4. Fault-tolerance under deletion of vertices

The vertex-connectivity of a hyperdigraph H coincides with the vertex-connectivity
of its underlying digraph Ĥ , that is, � = �(H) = �̂ = �(Ĥ). The same occurs with
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the w-vertex-fault-diameter: Dw(H) = Dw(Ĥ) for any w = 1; : : : ; d̂− 1, where d̂ is the
minimum degree of Ĥ . Therefore, the numerous known results about this parameter for
digraphs, can be applied for hyperdigraphs just by considering the underlying digraph.

Next results are obtained by considering the results about vertex-connectivity of
digraphs given in [5]. These results are based on the parameter ‘�, that was introduced
in the same paper. We recall here its deDnition.

De�nition 4.1. Let G be a digraph with minimum degree d¿2 and diameter D. Let �
be an integer such that 06�6d− 2. We deDne ‘� = ‘�(G) as the maximum integer,
with 16‘�6D, such that for any pair of vertices x; y ∈ V (G),
• if d(x; y)¡‘�, there is only one shortest path from x to y and there are at most �

paths from x to y with length d(x; y) + 1.
• if d(x; y) = ‘�, there is only one shortest path from x to y.

Observe that, in any case, ‘�(G)¿0. If �¿1 or � = 0 and G is loopless, then
‘�(G)¿1.

Proposition 4.1. Let H be a simple hyperdigraph with diameter D and vertex-
connectivity �. Let d̂¿2 be the minimum degree of the underlying digraph Ĥ and
consider ‘� = ‘�(Ĥ); where 06�6d̂− 2. Then; �¿d̂− � if D62‘� − 1.

Some interesting corollaries about the vertex-connectivity of iterated line hyperdi-
graphs are deduced from this proposition. The following one is proved by taking into
account that L̂kH=LkĤ and that ‘�(LkĤ)=‘�(Ĥ)+k whenever H is a simple digraph,
Ĥ is not a cycle and ‘�(Ĥ)¿1 [5].

Corollary 4.2. Let H be a simple hyperdigraph with diameter D. Let d̂¿2 be the
minimum degree of the underlying digraph Ĥ and consider ‘�=‘�(Ĥ); where 06�6
d̂− 2 and ‘�(Ĥ)¿1. Then; �(LkH)¿d̂− � if k¿D − 2‘� + 1.

The particular case �= 0 is specially interesting.

Corollary 4.3. Let H be a simple hyperdigraph with diameter D such that its
underlying digraph Ĥ is loopless. Let us consider ‘0 = ‘0(Ĥ)¿1. Then; �(LkH) = d̂
if k¿D − 2‘0 + 1.

Since the line hyperdigraph LH is simple for any hyperdigraph H , we can see
from the last corollary that, for any hyperdigraph H such that Ĥ is loopless, the
vertex-connectivity of LkH is maximum if the number of iterations k is large enough.
If, besides, H is s-uniform, we have seen that H is maximally connected if and only
if � = ds. Therefore, in that case, the iterated line hyperdigraph LkH is maximally
connected if k is large enough.

In a similar way, we can apply the results in [6] for fault-diameters of digraphs to Dnd
bounds on the vertex-fault-diameter of hyperdigraphs. In particular, from the results for
iterated line digraphs, we can see that, if k is large enough, the w-vertex-fault-diameter
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of an iterated line hyperdigraph LkH is Dw(LkH)6D(LkH)+C, where C is a constant
that depends only on w and Ĥ , but does not depend on the number of iterations k.

5. Hyperarc-connectivity

The aim of this section is to present some bounds for the hyperarc-connectivity
of any hyperdigraph H . SuKcient conditions for a hyperdigraph to have maximum
hyperarc-connectivity are derived.

Let us recall that the bipartite representation of a hyperdigraph H is a bipartite
digraph R = R(H) = (V (R); A(R)) with set of vertices V (R) = V0(R) ∪ V1(R), where
V0(R) = V(H) and V1(R) = E(H), and set of arcs

A(R) = {(u; E) | u ∈ V0; E ∈ V1; u ∈ E−} ∪ {(F; v) | v ∈ V0; F ∈ V1; v ∈ F+}:
Observe that, if u; v are two vertices of H , a path of length h from u to v in H
correspond to a path of length 2h in R(H) and, then, dR(u; v) = 2dH (u; v). Also the
bipartite representation of the line hyperdigraph LH is R(LH) = L2R(H).

The hyperarc-connectivity �= �(H) of a hyperdigraph H can be expressed in terms
of the bipartite representation of H . In eLect, � is the minimum cardinality of all the
subsets F⊂V1 such that there exist two vertices u; v ∈ V0 such that there is no path
from u to v in R−F.

We deDne next a parameter, similar to the parameter ‘�, that will be useful to bound
the hyperarc-connectivity. This parameter is deDned for bipartite digraphs and will be
applied to the bipartite representation of the hypergraph. Let R=(V0(R)∪V1(R); A(R))
be a bipartite digraph. Let us consider d+

0 (R)=minv∈V0 d
+(v), the minimum out-degree

of the vertices in V0, and d−0 (R), the minimum in-degree of the vertices in V0. Let us
take d0 = d0(R) = min{d+

0 ; d
−
0 }.

De�nition 5.1. Let R=(V0(R)∪V1(R); A(R)) be a bipartite digraph with d0(R)¿2 and
diameter D. Let � be an integer such that 06�6d0 − 2. We deDne h� = h�(R) as the
maximum integer, with 16h�6D, such that for any pair of vertices x; y, with x ∈ Vi,
y ∈ Vj and i �= j,
• if d(x; y)¡h�, there is only one shortest path from x to y and there are at most �

paths from x to y with length d(x; y) + 2;
• if d(x; y) = h�, there is only one shortest path from x to y.

Observe that the vertices x and y that appear in the deDnition of the parameter h�(R)
are diLerent, that is, d(x; y)¿1. Then, it is clear that, for any bipartite digraph R, there
exists h�(R) and h�(R)¿1.

Let R= (V0(R)∪V1(R); A(R)) be a bipartite digraph. Then, the iterated line digraph
L2R is a bipartite digraph and, in a natural way, we can put, for i = 0; 1, Vi(L2R) =
{x0x1x2 ∈ V (L2R) | x0 ∈ Vi(R)}. In this situation, d0(L2R)=d0(R) and we can consider
h (R) and h (L2R) for the same values of  .
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Proposition 5.1. Let R = (V0(R) ∪ V1(R); A(R)) be a bipartite digraph di>erent from
a cycle. Then; h (L2R) = h (R) + 2 for any  = 1; : : : ; d0 − 2. If there are no cycles
of length 2 in R; then h0(L2R) = h0(R) + 2.

Proof. Let us consider x = x0x1x2 ∈ Vi(L2R) and y = y0y1y2 ∈ Vj(L2R), where i �= j.
If d(x; y)¿3 and d(x; y)6h (R) + 2, then d(x2; y0)6h (R). Therefore, the shortest
path from x2 to y0 is unique and so is the shortest path from x to y. If d(x; y)¿3
and d(x; y)¡h (R) + 2, then d(x2; y0)¡h (R) and there are at most  paths from x
to y with length d(x; y) + 2. If d(x; y) = 1, then the vertices x1x2 and y0y1 of LR are
equal. Since in LR there is at most one cycle of length 2 on the vertex x1x2, in L2R
there is at most one path with length 3 = d(x; y) + 2 from x to y. If R has no cycles
of length 2, there is no path of length 3 from x to y. Therefore, h (L2R)¿h (R) + 2
if  ¿1 or  = 0 and R has no cycles of length 2. Since R is not a cycle, it is not
diKcult to see that h (L2R)6h (R) + 2.

Proposition 5.2. Let R= (V0 ∪ V1; A) be a bipartite digraph and let us consider h =
h (R); where 06 6d0 − 2. Let us consider a vertex x ∈ V0; a subset F⊂V1; with
|F|6d0 −  − 1; and a vertex y ∈ F. Then;
• There exists a vertex x1 ∈ V0 and a path xy1x1 such that y1 �∈ F and d(x1; y)¿

min{d(x; y) + 2; h } and d(x1; y′)¿min{d(x; y′); h } for any y′ ∈ F.
• There exists a vertex x−1 ∈ V0 and a path x−1y−1x such that y−1 �∈ F and
d(y; x−1)¿min{d(y; x) + 2; h } and d(y′; x−1)¿min{d(y′; x); h } for any y′ ∈ F.

Proof. We are going to prove the Drst statement. The second one is proved analo-
gously. Let !+(x) be the set of vertices that are adjacent from x and let us consider
the set v(x → F)⊂!+(x) deDned by: z ∈ v(x → F) if and only if there exists
y′ ∈ F such that d(x; y′)6h and (x; z) is the Drst arc of the shortest path from x to
y′. Since |v(x → F)|6d0 −  − 1, there exists a vertex y1 ∈ !+(x)− v(x → F) such
that the Drst vertex of any path from x to y with length d(x; y) + 2 is diLerent from
y1. Let x1 be any vertex in !+(y1). It is not diKcult to prove that this vertex satisDes
the required conditions.

Theorem 5.3. Let H be a hyperdigraph with minimum degree d; diameter D and
hyperarc-connectivity �. Let R = R(H) be its bipartite representation and consider
h = h (R). Then; �¿d−  if D6h − 1.

Proof. We are going to prove that, if D6h −1, for any set of vertices of the bipartite
representation F⊂V1 =E(H), with |F|6d− −1, and for any pair of vertices u; v ∈
V0, there exists a path from u to v in R−F. ELectively, from Proposition 5.2, we can
Dnd in R a path uE1u1E2u2; : : : ; Emum such that Ei �∈ F and dR(um;F)¿h . Equally, we
can Dnd a path v−nE−n; : : : ; v−2E−2v−1E−1v such that E−i �∈ F and dR(v−n;F)¿h .
Then, a shortest path from um to v−n, of length at most 2D¡ 2h , will avoid F.



22 D. Ferrero, C. Padr3o / Discrete Applied Mathematics 117 (2002) 15–26

The following corollary is a direct consequence of Theorem 5.3 and Proposition 5.1.

Corollary 5.4. Let H be a hyperdigraph with minimum degree d; and diameter D.
Let R = R(H) be its bipartite representation and consider h = h (R). Then;
• �(LkH)¿d−  if k¿D − h + 1.
• If R has no cycles of length 2; then �(LkH) = d if k¿D − h0 + 1.

6. Hyperarc-fault-diameter

The hyperarc-fault-diameter, D′
w(H), of a hyperdigraph H , which is deDned as the

maximum diameter of the hyperdigraphs obtained from H by removing at most w
hyperarcs.

In the same way as we did for the hyperarc-connectivity, we are going to use the
bipartite representation R(H) to study that parameter. In particular, we present a bound
on D′

w(H) in terms of h0(R) and the parameter M0;1(R). The parameter M ;r was
deDned in [6]. We present here its deDnition for the particular case  = 0 and r = 1.

De�nition 6.1. Let G be a loopless digraph d¿2. A (0; 1)-double detour in G is a set
of four paths {C1; C′

1; C2; C′
2} such that

• C1 and C′
1 are paths from x to f, with lengths s and s′, respectively, where s′¿s

and s′¿1. C2 and C′
2 are paths from f to y, with lengths t and t′, respectively,

where t′¿t and t′¿1. Besides, max{s; t}¿1.
• If s �= 0 and (x; x1) and (x; x′1) are, respectively, the Drst arcs of C1 and C′

1, then
x′1 �= x1.

• If t �= 0 and (y1; y) and (y′
1; y) are, respectively, the last arcs of C2 and C′

2, then
y′

1 �= y1.
The length of a (0; 1)-double detour is deDned to be s′ + t′. We deDne M0;1(G) as the
minimum length of a (0; 1)-double detour in G.

The following two propositions are proved in [6].

Proposition 6.1. M0;1(G)¿4 for any loopless digraph G with minimum degree d¿2.

Proposition 6.2. Let G be a loopless digraph with minimum degree d¿2. Then; for
any positive integer k; M0;1(Lk(G)) = M0;1(G) + k.

We are going to use the following lemma, which is proved in a similar way as
Proposition 5.2.

Lemma 6.3. Let R=(V0∪V1; A) be a bipartite digraph without cycles of length 2 and
h0 = h0(R). Let us consider a vertex x ∈ V0 and a subset F⊂V1; with |F|6d0 − 1.
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Then;
• There exists a vertex x1 ∈ V0 and a path xy1x1 such that y1 �∈ F and d(x1; y)¿

min{d(x; y) + 2; h } for any y ∈ F.
• There exists a vertex x−1 ∈ V0 and a path x−1y−1x such that y−1 �∈ F and
d(y; x−1)¿min{d(y; x) + 2; h } for any y ∈ F.

Theorem 6.4. Let H be a hyperdigraph with minimum degree d and diameter D
such that its bipartite representation R = R(H) has no cycles of length 2. Let us
consider h= h0(R) and M =M0;1(R). Then; if D6h− 1; for any w= 1; : : : ; d− 1; the
w-hyperarc-fault-diameter of H veri%es D′

w(H)6D + C; where

C = max
{
D −

⌊
M − 1

2

⌋
+ 4; 2

(
D −

⌊
h
2

⌋)}
:

Proof. Let F⊂E(H) =V1(R) be a set of faulty hyperarcs with |F|=w¡d. We are
going to prove that, for any pair of vertices x; y ∈ V(H) = V0(R), there exists in H
a path from x to y with length at most D + C avoiding the hyperarcs in F. From
Lemma 6.3, there exist paths xE1x1 and y−1E−1y in R such that E1; E−1 �∈ F and
dR(x1;F); dR(F; y−1)¿3 (observe that h¿D+ 1¿2). Besides, from the deDnition of
the parameter M0;1(R), we have that dR(x1; F) + dR(F; y−1)¿M − 4 for any F ∈ F.
Applying again Lemma 6.3, for any m; n¿1 we can Dnd paths xE1x1 : : : Emxm and
y−nE−n : : : y−1E−1y such that, for any F ∈ F,

dR(xm; F)¿min{dR(x1; F) + 2(m− 1); h};

dR(F; y−n)¿min{dR(F; y−1) + 2(n− 1); h}:

Then, if m; n¿D − �h=2� and m + n = C, it is not diKcult to see that dR(xm; F) +
dR(F; y−n)¿ 2D for any F ∈ F. Therefore, any shortest path in R from xm to y−n,
which has length at most 2D, will avoid F. Hence, we have found a path from x to
y in H with length at most D + m + n = D + C avoiding the faulty hyperarcs in F.

As a consequence of Theorem 6.4, we obtain the following result about the hyperarc-
fault-diameter of iterated line hyperdigraphs.

Corollary 6.5. Let H be a hyperdigraph with minimum degree d and diameter D
such that its bipartite representation R = R(H) has no cycles of length 2. Let us
consider h = h0(R) and M = M0;1(R). Then; for any k¿D − h + 1 and for any
w= 1; : : : ; d− 1; the w-hyperarc-fault-diameter of the iterated line hyperdigraph LkH
veri%es D′

w(LkH)6D(LkH) + C; where

C = max
{
D −

⌊
M − 1

2

⌋
+ 4; 2

(
D −

⌊
h
2

⌋)}
:
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Proof. Apply Theorem 6.4 by taking into account that R(LkH) = L2kR(H) and that
h0(L2kR) = h0(R) + 2k (Proposition 5.1) and M0;1(L2kR) = M0;1(R) + 2k
(Proposition 6.2).

7. Fault-tolerance of de Bruijn and Kautz hyperdigraphs

We apply next the results in the above sections in order to study the connectivities
and fault-diameters of de Bruijn and Kautz hyperdigraphs and iterated line hyperdi-
graphs.

We recall here the deDnition and some basic properties of de Bruijn and Kautz
hyperdigraphs. See [1,3] for proofs and more information about those families. Let
n; d; s; m be integers such that dn ≡ 0 (modm) and sm ≡ 0 (mod n). The generalized
de Bruijn hyperdigraph H1 = GB(d; n; s; m) and the generalized Kautz hyperdigraph
H2 =GK(d; n; s; m) have set of vertices V(Hi) =Zn and set of hyperarcs E(Hi) =Zm.
The incidences in the generalized de Bruijn hyperdigraph H1 are given by
• u ∈ E− if and only if E ≡ du + ) (modm), where 06)6d− 1
• v ∈ E+ if and only if u ≡ sE + * (mod n), where 06*6s− 1.
The incidences of the generalized Kautz hyperdigraph H2 are deDned by
• u ∈ E− if and only if E ≡ du + ) (modm), where 06)6d− 1
• v ∈ E+ if and only if u ≡ −sE − * (mod n), where 16*6s.
The out-degree of any vertex of Hi is equal to d and all hyperarcs have out-size
s. Hi is d-regular and s-uniform if dn = sm. The underlying digraph of the gener-
alized de Bruijn hyperdigraph H1 = GB(d; n; s; m) is the generalized de Bruijn di-
graph or Reddy–Pradhan–Kuhl digraph [15,10] with degree ds and order n, that is,
Ĥ1

∼= GB(ds; n). Equally, the underlying digraph of the generalized Kautz hyperdigraph
H2 =GK(d; n; s; m) is generalized Kautz digraph or Imase–Itoh digraph [11] with de-
gree ds and order n, that is, Ĥ2

∼= GK(ds; n). Therefore, the diameter of Hi is minimum
or almost minimum. The line hyperdigraph of a generalized de Bruijn or Kautz hyperdi-
graph is another hyperdigraph in the same family: LGB(d; n; s; m) ∼= GB(d; dsn; s; dsm)
and LGK(d; n; s; m) ∼= GK(d; dsn; s; dsm).

If we take n = (ds)D and m = d2(ds)D−1, where D¿2, we obtain the de Bruijn
hyperdigraph

H = HB(d; s; D) = GB(d; (ds)D; s; d2(ds)D−1);

whose underlying digraph is Ĥ ∼= B(ds; D), the de Bruijn digraph [4,7] with degree ds
and diameter D. Similarly, by considering n= (ds)D + (ds)D−1 and m= d2((ds)D−1 +
(ds)D−2), where D¿2, we obtain the Kautz hyperdigraph

H = HK(d; s; D) = GK(d; (ds)D + (ds)D−1; s; d2((ds)D−1 + (ds)D−2));

whose underlying digraph is Ĥ ∼= K(ds; D), the Kautz digraph [13,7] with degree ds
and diameter D. De Bruijn and Kautz hyperdigraphs, HB(d; s; D) and HK(d; s; D), are
d-regular and s-uniform, and their order is very close to the Moore-like bound for their
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degree d, size s and diameter D. Observe that the Bruijn and Kautz hyperdigraphs are
iterated line hyperdigraphs: for instance, HK(d; s; D) = LD−2GK(d; (ds)2 + ds; s;
d2(ds + 1)) = LD−2HK(d; s; 2).

The vertex-connectivity of GB(d; n; s; m) and GK(d; n; s; m) can be directly derived
from the results about the vertex-connectivity of their underlying digraphs [9,5].

Theorem 7.1. Let us consider positive integers d; n; s; m; with dn ≡m 0 and sm ≡n 0.
Let H be the generalized de Bruijn hyperdigraph H=GB(d; n; s; m). Then; �(H)=ds−1
if D(H)¿3.

Theorem 7.2. Let us consider positive integers d; n; s; m; with dn ≡m 0 and sm ≡n 0.
Let H be the generalized Kautz hyperdigraph H =GK(d; n; s; m). Then; �(H)¿ds−1
if D(H)¿3. Besides; if D(H)¿5;

�(H) =
{
ds if n is a multiple of ds + 1 and gcd(ds; n) �= 1;
ds− 1 otherwise:

If dn=sm, the hyperdigraphs H1=GB(d; n; s; m) and H2=GK(d; n; s; m) are s-uniform.
In this case, we can Dnd their hyperarc-connectivity because �(Hi)6�(Hi)s. Therefore,
if D(Hi)¿3, we have that �(Hi)s¿ds− 1 and, hence, �(Hi)=d if s¿2. In particular,
if D; s¿2, the hyperdigraphs HB(d; s; D) and HK(d; s; D) have hyperarc-connectivity
� = d.

In order to Dnd the hyperarc-connectivity of generalized de Bruijn and Kautz hyperdi-
graphs, H1 =GB(d; n; s; m) and H2 =GK(d; n; s; m), we observe that h1(Hi)¿2�logds n�.
Therefore, if D(Hi)¿3, we can apply Theorem 5.3 and obtain �(Hi)¿d− 1.

Since the vertex-fault-diameters of the de Bruijn and Kautz digraphs are equal
to those of their underlying digraphs, we can apply the results in [14] about the
fault-diameters of de Bruijn and Kautz digraphs. Therefore, Dw(HB(d; s; D))6D + 2
for any w = 1; : : : ; ds− 2 and Dw(HK(d; s; D))6D + 2 for any w = 1; : : : ; ds− 1.

We can apply Corollary 6.5 in order to Dnd the hyperarc-fault-diameter of Kautz
hyperdigraphs by taking into account that HK(d; s; D) = LD−2HK(d; s; 2). Therefore,
D′
w(HK(d; s; D))6D + 2 for any w = 1; : : : ; ds− 1.
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