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Abstract 

A generalized p-cycle i s  a digraph whose set of ver- 
tices i s  partitioned in p parts that can be ordered in 
such a way that a vertex is adjacent only to  vertices 
in the next part. T h e  families of B G C ( p , d : d k )  and 
K G C ( p ,  d ,  dP+k + d k )  are the largest known p-cyles f o r  
their degree and diameter. 

In this paper we present routing algorithms f o r  both 
families. Such algorithms route over paths of length at  
most the value of the diameter plus two units. More- 
over, this bound i s  attained only in the case that the 
number of faulty elements (nodes or  links) is maxim,um. 

1. Introduction 

Interconnection networks have been usually modeled 
by graphs and digraphs. The switching elements or 
processors are represented by the vertices. The commu- 
nication links are represented by edges (if they are bidi- 
rectional) or arcs (if they are unidirectional). We are 
only concerned with directed graphs, called digraphs 
for short. 

In the design of such networks several requirements 
should be taken into account. Some optimization prob- 
lems on graphs and digraphs arise when translating 
these requirements into the above model. One of them 
is to  find digraphs with large order and fixed degree d 
and diameter D ( ( d ,  D)-digraph problem). 

For the (d ,  D)-digraph problem the best known gen- 
eral solutions are the de Bruijn and Kautz families of 
digraphs. 111 the case of bipartite digraphs, the family 
of B D ( c ~ , ~ ~ - ~  + d D - l )  proposed by Fiol and Yebra 
in [4], is the best solution known so far. Lately, this 
problem has been studied in the case of generalized cy- 
cles. That is, for digraphs whose set of vertices is par- 
titioned in several parts that  can be ordered in such a 

way that a vertex is adjacent only to  vertices in the next 
part. In this case, the best known solutions are fam- 
ilies of generalized cycles proposed by Gomez, Padr6 
and Perennes in [6]. In fact, the B G C ( p ,  d) d k )  and 
K G C ( p ,  d ,  dP’k + d k )  are the largest p-cycles for their 
degree and diameter. These families are a generaliza- 
tion of the proposed solutions for the general and bi- 
partite cases. 

Other requirement for an interconnection network is 
that the system still works if some elements (nodes or 
links) fail. This mean that the network must be fault- 
tolerant. Furthermore, it is desirable that the network 
still communicate with reasonable efficiency. In order 
to  achive this requirement is necessary to find rout- 
ing algorithms that could communicate when same el- 
ements are faulty, but the network still connects every 
pair of nodes. 

Fault tolerant routings in de Bruijn and Kautz di- 
graphs has been studied in [9]. For the bipartite di- 
graphs B D ( d :  dD-3+d”-’) routing was studied in [lo] 
with similar techniques. 

In this paper we study routing algorithms for large 
generalized cycles. In the next section we present 
the most releva.nt notation and definitions to use in 
the following. In Section 3 and Section 4 we coil- 
struct the set of paths tha.t the algorithms will use 
to route. In Section 5 and Section 6 we give a coni- 
plete description of the algorithms in B G C ( p ,  d ,  d k )  
and K G C ( p ,  d ,  d P + k  + d k )  respectively. 

2. Definitions, notation and known re- 
sults 

We are concerned only in dzgraphs. See [2j for the 
definitions of the concepts about digraphs that are not 
defined hsre. 

In the lzne dzgraph LG of a digraph G each vertex 
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represents an arc of GI that is, V(LG)  = {uv/(u,v) E 
A(G)}.  A vertex uv is adjacent to a vertex vw if v = w, 
that is, whenever the arc ( U ,  v) of G is adjacent to the 
arc (w, z ) .  The maximum and minimum out and in- 
degrees of LG are equal to those of G. Therefore, if G is 
a strongly connected digraph different from a directed 
cycle, then the diameter of LG is the diameter of G 
plus one. 

The k-iterated line digraph, Lk (G) ,  is defined recur- 
sively by Lk(G)  = LL"'(G), beginning with L'(G) = 
LG. Note that a vertex x of Lk(G) may be represented 
as a sequence X O , X ~ ,  . . . , xk of vertices of G such that 
(xi,xi+l) E A,O 5 i 5 IC - 1. Then an arc in Lk(G) 
can be represented by a sequence of k + 1 vertices of G. 
In general, a path of length h can be represented as a 
sequence of k + h vertices of G. 

A generalized p-cycle is a digraph G such that its 
set of vertices can be partitioned in p parts, V ( G )  = 
UaEz,V,, in such a way that the vertices in the partite 
set V, are only adjacent to vertices in V,+l, where the 
sum is in Z,. If G is strongly connected, I'+(lJa) = 
V,+1. Bipartite digraphs are generalized pcycles with 
p = 2 .  

The conjonction of a directed cycle of length p with 
a digraph G = (V, A ) ,  C,@G, has set of vertices Z, x V 
and a vertex (a ,  x) is adjacent to  the vertices (a  + 1, y )  
for any y adjacent from x in G. Observe that C, @ G is 
a generalized p-cycle for any digraph G. The diaiiiet.er 
of C, @ G is h + p - 1, where h is the minimum integer 
such that for any pair of vertices x ,  y,not necessarily 
different, of GI there is a path from x to y with length 
1 5 h and 1 G is 
isomorphic to C, @ LG. Let G = (V: A) be a digraph 
and let q5 an automorphism of G. The generalized c>-cle 
C,@$ G is defined as follows: its set of vertices is Z, x V7 
and the adjacency rule is given by: I'+(Va,z) = (a + 

[6] G6mez, Padr6 and Perennes studied the 
problem of finding regular generalized pcycles n-ith 
given degree and diameter that have large order. They 
gave a bound for this problem and some families of 
generalized cycles wich are very close t,o this bound. 
These families are the de Bruijn generalized cycles, 
BGC(p, d ,  d"l) wich are defined by C,@GB(dE: d"'), 
and the Kautz generalized cycles, KGC(p, d.  dP+k  - d k )  
defined by C, is an auto- 
morphism in Z ,  definded by $(x) = --5 - 1. TheFe are 
the largest known pcycles for their degree and diiinie- 
ter. We recall here some interesting properties of these 
families. The generalized cycle BGC(p, d,  d"'l j = 
C, @ B(d, k + 1) = C, @ L'Kd is d-regular, has d k t l  
vetices ir each partite set, and diainetcr p + k .  The p- 

h(modp). The line digraph of C, 

LqM) = {(a + 1 , Y )  : ( & ( X ) , Y )  E A). 
In 

GB(d, dP+k + dk), where 

cycles KGC(p, d, dP+k + dk)  = L 'KGC(p,d,p(dP- 1)) 

are d-regular, have dp+k + dk vertices in each partite 
set, and diameter 2p + k - 1. 

These families contain these wich were proposed as 
solutions to the problems mentioned above restricted to 
the cases p = 1 (general digraphs) and p = 2 (bipartite 
digraphs). Actually, BGC(1, d ,  n)  and KGC(1, d, n )  
coincide with GB(d, n )  and GK(d,  n) respectively. 
Also, B(d,D)  = BGC(l ,d ,dD)  and K ( d , D )  = 
KGC(1, d , d D  + d D - l ) .  The bipartite digraphs 
BD(d, n), introduced by Fiol and Yebra in [4], are the 
same generalized cycles KGC(2, d ,  n). The bipartite 
digraphs BD(d, d D P 1  + d D P 3 )  = KGC(2, d ,  dD-P+' + 
dD-Zp+l ) have large order for their degree and diame- 
ter. Finally, observe that BGC(p, d ,  d p )  wich has diam- 
eter 2p - 1 and order pdp,  is isomorphic to  the directed 
butterfly, B d ( p )  [l] .  Therefore, the directed butterfly 
is an iterated line digraph, Bd(p) = Cp 8 LP-lK;. 

3. Paths in BGC(p, d ,  d k s l )  

We are going to construct d independent paths be- 
tween any pair of vertices of BGC(p, d ,  d"+'), of length 
at most p + IC + 2.  Moreover, at most one of them has 
length p + k + 2. 

Let U ,  v two adjacent vertices of BGC(p, d, d k + l )  = 
L ~ ( c ,  @ K:): 

with x,  E C, @ K$,tiz = 0 , .  . . ~ k + 1. 
An evident path from u to v is the arc ( u , v ) :  
[To,x1.. . . ,xk,xk+l]. so: we must find d-1 paths from 
U to U ,  not containing the arc (u ,v)  and with general 
expression: 

[ZO, ~ 1 ,  . . . , xk, a1 , a2, . . , a,; -51 > 5 2 1 .  . . i xk+1] 

wi th r  5 p + l .  
That is, we need d - 1 paths from x k  to  2 1  in C, @ Kd+ ~ 

with length at  most p + 2  (and at  most one with length 
p+ 2). These paths must be independent with the first 
one, so we ask: a1 # xk+1 and a, # xo. 
As [ X I , .  . . , xk] is a path in C, @ Kd+, if x1 E V,  then 
xk E V, with j =, k t i  - 1. To consider this. we study 
different cases, depending on the value of IC in Z,: 
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If xo = xk and XI = Xk+l: All the paths are 
taken with pattern [ X k , Q f , c $ , .  . . , c Y ~ - ~ , c Y ~ , x ~ ] ,  
with a; # X I ,  CY; # xo and 1 5 s 5 d - 1. 

If xo  # xk and x1 = xk+1: We take a path 

and d - 2 paths [ x k ,  as, CY;, . .  . , a&l: a;, x l ] ,  with 
a; # 2 1 ,  a: # xk,xO and 2 5 s 5 d - 1. 

If xo = xk and x1 # xk+l: One path with 
form [ x k , x l , a $ , .  . . ,ab,xl]  with CY; # 20. The 
remaining paths are [xk ,  as, a;, . . . , ai-1, a;, X I ] ;  

[ x k , a l , a i , .  1 . . , Q ~ - 1 , X k I Z k + 1 ]  with a: # Xk+l; 

with CY; # x k ,  # X1,xk+l and 2 5 S 5 d - 1. 

0 2. k G p  T ,  1 5 T 5 p - 1, p 2 4: d ( X k j x 1 )  = 
p -  r + 1 and we can assume that xk E V,, X I  E V I .  
All paths have pattern [ X k ,  a:+1,  CY^+^, . . . , a;, x i ] ,  
with as # xk+l, ai # XO, and 1 5 s 5 d - 1. 

0 3. k - p  p - 1: d ( x k , x l )  = 2 so we assume that 
ZI; E 

If xk+l # 20: w e  take d-2 paths with pattern 
[ X ~ , ~ ? , Z I ] ,  with CY; # 20,2k+l and 2 5 s 5 d -  1: 

with 
a: # 5 1 ,  a;-1 # xk.  

and X I  E VI .  

and a p a t h  [ x k , X O , a ~ , a ~ ,  . . . , C Y ~ ~ ~ , X ~ + ~ , X ~ ]  1 

If xk+1 = 20: All paths with the pattern 
[ I C ~ , Q ~ , X ~ ] ,  with ai # xol  1 I s 5 d - 1. 

Proposi t ion 3.2 
If Qs  has the same pattern that in Prop. 3.1 and Qt i s  

1 aP+T [xo, X I  ; .  . . , x k ,  at , . . . , a;, . . . , t , X I ,  . . . . X k ,  x k+l ] .  
rf {a:, .  . . ,a;} n {a i ,  . . . ,a;+'} = 4 and 1 5 T 5 p .  
then Q s  and Qt  are disjoint. 

To prove these propositions we state: 

Lemma 3.3 
Let u ,v  two vertices in V ( B G C ( p , d , d k + l ) )  with ex- 
pressions in terms  of C, @ KZ: 

U = b l . .  . b n a l . .  . a j c l . .  . ~ k + l - ~ - j  

v = ai.. . a j , c l . .  I '  . ~ k + ~ - ~ - ~ , b l . .  . b, 

I f  { a l . .  . a 3 }  n { c i . .  . c ; + ~ - ~ - ~ , }  = 4 and j '  < j OT 

{a;. . . a;,}n{c,. . . = 4 a n d n  < k+l--7z-j  
then U # U. 
Moreover, if the expressions fo r  u , v  can be ordered in 
the above pattern, U # U. 

Proof: If U = U ,  equaling term by term the expressions 
for U and v we can construct the equivalence digraph 
[9]. There, bl , . . . , b, have in-degree 1 and out-degree 1, 
a1 , . . . a j ,  c l , .  . . ck+l-n--j in-degree 0 and out-degree 
1 and a: , . . . , ai,  , ci , . . . , C B + ~ - ~ - ~ ,  in-degree 1 and out- 
degree 0. If j '  < j or n < k + 1 - n - j ,  there exist 
a , p  such that 1 5 CY 5 k +  1 - n - j ,  15 /3 5 j' and 
a& = c& wich is not possible. 
Besides, if the expressions for u,'u achive the pattern 
given, the situation in the equivalence digraph will be 
the same. 

Proof of Proposition 3.1: 
Let qs,j the j - th  vertex after U in Q,: 

1 

1 
x j , .  . . , x k r a s , .  . . ,a;,j = 1. .  . T  

x j ,  . . . , z k ,  a,, . . . , a ~ , z 1 .  . . , xj-,.,j = r + 1.. . k 
a i - k  ] . . . ,  a;,x1 . . . ,  X j - , , j = k + l . . . k + r  

{ C Y ~ - ~ , . . . , Q ~ , S ~  . . . ,  x i - , , i = k + l . . . k + r  

x i , .  . . , x k , l $ ,  . . . , o ! ~ , ~  = 1 . .  .T  

{ 
and qt,i the i-th after U in Qt:  

x i ,  . . . , z k , a ~  , . . .  , c Y F , x ~  . . . ,  x i - , , i = r + 1 . . . k  

We have to  show that qs,j # qt,i. By the simmetry of 
the paths and because we are on a pcycle, it  suffices 
to consider the case j 5 a and i --p j .  With these 
considerations, it is enough to apply the Lemma 3.3 to 
conclude that Q ,  and Qt are disjoint. 

Proof of Proposition 3.2: 
If r = 0 is trivial. If r > 0, from Prop. 3.1, 
QS = [ X O ,  5 1 ,  . . . , X k ,  a,, . . . all X i ,  . . . , x k ,  xk+l] and 

disjoint. Then Qs does not have any vertex in com- 
mon with the first r + 1 of Qt.  Analogously, with 

instead of Qt ,  we have that Qs does not have any com- 
mon vertex with the last p + 1 of Qt.  
Now, we have to prove that Q ,  does not have any com- 
mon vertex with the ones of Qt in positions from r + 2 
to k + p + 1. As we do in the proof of Prop. 3.1, we 
compare the expression for qs ,J :  

1 

Qt = ~ ~ 0 ~ ~ 1 ~ ~ ~ . , ~ ~ , ~ t , . . . , ~ ~ , ~ ~ , . . . , ~ k , x ~ + ~ ~  1 are 

r+l 
[ZO,x11.. . 1 X k 1  at 1 . .  . I 4 + p ~ x 1 , .  . . ~ x k i  xk+l] 

z3-1.. . a ; .  . . a;-l,j = 1 . .  . p  + 1 
~ j - 1  . . . as . . . ~ j - ~ - z , j  = p + 2.. . k 
~ Y - k - 1 . .  . ag+l.. . xj-p-z,j = k + 1 . .  . p  + k + 1 

X z - 1  . . . a1 t . . . at-,, i = r + 2 .  . . ; p  + r + 1 

i 
with the expression for qt,i: 

i t  ~ ~ - ~ - ~ . . . a ~ + , . . . x ~ - ~ - ~ - ~ , i =  k + 2  . . . p +  k + l  

By the condition { a i , . .  . , a i )  n {a i , . .  . ,a:+'} = q5 
vertices with j = 1 . . . p + 1 and i = r + 2 .  . . , p  + r + 1 

x , - ~  . . . CY: . . . i = p + T + 2.. . k + 1 
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( j  = k+ 1 . .  . p +  k +  1 and i = k + 2 . .  . p +  k +  1 or with 
j = p + 2 . .  . k and i = p+r+2 . .  . k + l )  cannot coincide. 
For other cases, it suffices to  apply the Lemma 3.3. 

Theorem 3.4 
Let U ,  v E V ( B G C ( p , d ,  k + 1)). There exist d disjoint 
paths from U to U with length less or equal than p+ k+2, 
and at most  one with length p + IC + 2. 

If U ,  U are adjacent the theorem is valid by the above 
propositions. If not, is easy prove it by induction on k. 

4. Paths in KGC(p, d,  dP+‘“ + &) 

In the first part of this section, we deal with disjoint 
paths in K G C ( p ,  d ,  d P  + 1). In the second, from these 
paths we prove the existence of the paths needed in 
K G C ( p ,  d ,  dP+k + dk). 

Let us see how to  construct the paths needed in 
K G C ( p ,  d, d P  + 1). 

We are going to  construct d - 1 disjoint paths of 
length at  most 2p + 1 between every pair of vertices 
x ,  y in KGC(p, d ,  dP + 1). Moreover, these paths avoid 
two given arcs, one from x and the other to y. 

Proposi t ion 4.1 
Let x , y  E V(KGC(p,d,dp + l)), different or not. 
There exist d disjoint paths f r o m  x to  y with length 
at most  2p. 

Proof: Suppose x E V, and y E vk, 1 5 k 5 p and 
prove by induction on k.  

If k = 1 and ( I C , ~ )  is an arc, I’+(x) = {y,z2,. . . , z d } .  
As there is a unique path of length p from any zi to 
y; we have a path of length 1 and d - 1 paths with 
length p + 1 5 2p .  Analogously, if (x, y )  is not an arc. 
r+(z) = (21: 2 2 ; .  . . , z d } .  As there is a unique path of 
length p from any z ,  to y ,  we have d paths of length 
p+ 1 I 2 p .  

Now suppose that for any y E &, 1 5 1 5 k - 1. 
there exist, d disjoint paths from IC to y, with length at 
most p + 1. 
Let y E V, and T-(y)  = {vl ,  v2 , .  . . , vd}. As Y ( y )  is in 
Vk- 1 ,  there exist d disjoint paths from IC to  each vertex 
U,, with length p + IC - 1. From these, we construct a 
set of d disjoint paths. First, we take an arbitrary path 
from z to  1’1: wich begin by the arc (z: 21) .  Then: n-e 
add a path from x to v2 wich not contain the vertex zl .  
(These paths exist because there are d disjoint paths 
from n. t o  1 ’2) .  Suppose that this path Iicgiii with t l i p  

arc (x. 2 2 ) .  Iteratiiig this procedure d tiiiies we obtain 
d prttlis froiii J: to each vertex in r - ( y ) ,  with leiigth 
p t - k - 1 .  

Clearly. the paths constructed by adding the arc 
(ut, y) to the p t l i  froiii z to ‘ t ; t  %re disjoiik. 

Proposition 4.2 
Let x ,  y E V(KGC(p, d ,  d P + l ) )  in non-adjacent partite 
sets, x’ E V(r+(x ) )  and y’ E l?--(y). There exist d - 1 
disjoint paths of length at most 2p from x to y, avoiding 
the arcs ( q x ’ )  and (y‘,y). 

Pro05 By the Prop. 4.1, we know d disjoint paths of 
length a t  most 2p from x t o  y. Also, as the out-degree 
of x and the in-degree of y are d ,  these paths contain 
the arcs (x,x’) and (y‘,y), so: 

If the arcs ( x ,  x’) and (y’, y) belong to the same path, 
we discard it, and still have d - 1 disjoint paths from 
x to y with length a t  most 2p. 

If the arcs (x,x’) and (y’,y) are in different paths, 
we discard both, and define another path. Sup- 
pose x E VO and y E Vj, with k # 1 , p  - 1. If 
(x,x’) is in the path of minimum length ( k )  from 
x to  y, we have: [x, x’, a;, . . . , ai-l, y] (ai-1 # y’) 

these, we construct a new one, replacing the arc ( x ,  x’) 
with a path of length p + 1 and using the vertex 
ai: [x, ai, . . . , x’, a;, . . . , ai-1, y]. This path is disjoint 
with the other d - 2 because [x’, a;, . . . , ai-l, y] does 
not intersect any path, and [ai,.  . . ,IC’] have length p 
and 0; is not used from x by any other path. Analo- 
gously if (y’,y) is in the path of minimum length. If 
(x ,x ‘ )  and (y’,y) are in paths of length p + k from 
x to y, we consider: [z:x’, cy;,. . . ,cy;,. . .   CY;+^-^; y] 

(ai # x’). From these, we construct a path replac- 
ing [x’, a;,. . . ,cy;] with a path of length p ,  by a path 
from cy! to 0;: [ x .  a i , .  . . ,cy;, . . .  CY^+^-^, y]. This 
new path is disjoint with the other d - 2 because 
[cy;,. . . . y] does not irkersect any path, and 
[ C Y : , .  . . . CY;] have length p and cy? is not used from IC 

by any other path. 
If x = y the above coiistruction is also valid. 

and [x, a i , .  . . ,cy:, . . . rap+k-23Y’,y] t (ai # x’). From 

(Q;+k-l # Y’) and [x, at,,. . . 3 ‘ .  7 a:+k-2, Y’l Y1 

Proposi t ion 4.3 
Let x, y E V(KGC(p.  d.  dp+l)) in adjacent partite sets, 
dV(F+(z)  and y’ E r - (y ) ) .Tkere  exist d - 1 disjoint 
paths of length at most  2p  + 1 from x to y, avoiding the 
arcs (IC, IC’) and (y’, y) .  Moreover, at most one of them 
have length 2p  + 1. 

Proof: By the Prop. 4.1, we know d disjoint paths of 
length at  most 2 p  from n: to y. Also; as the out-degree 
of n: and tlie in-degree of y are d. these paths contain 
the arcs (e;~’) and (y ’ . y ) .  This situation is the same 
that in Prop. 4.2, but them minimum path cold be the 
arc ( z .y ) .  For this reason, we study only the case in 
wich there exist an arc ( 2 . ~ 1 .  By the symmetry of 
KGC(p.d,d” + 1) 11-e ran assume IC E i/o and y E VI 
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If y # z’ and z # y’, then (z, z’), (y’, y) are in paths 
of length p + 1. 
If ( z ,~ ’ )  and (y’,y) belong to  the same path, it is not 
the minimum one, so we discard it and still have d - 1 
disjoint paths from z to  y with length at most 2p. 
If not, we have paths: [x,x‘,a$ ,a; ,y j  (a; # y’) 

We discard both 
and construct a new path replacing the arc (x.~’) 
by a path of length p + 1, using the vertex ai: 
[x, ai , .  . . , z‘, CY; , .  . . ,cui, y]. This path is disjoint with 
the other d - 2 because [x’, ad, . . . , a;, y] does not in- 
tersect any path, [a;, . . . , x‘] have length p and 0; is 
not used from x by any other path. 

If y = x’ and x = y’, then (x,x’) = (y’,y) = (x,y) 
and it is enough to discard the arc (z, y). 

If y = z’ and z # y‘, then (x,x’) = ( z ,y ) .  Here 
we discard the arc ( z , y )  and the path by (y’,y): 
[x, as, . . . , a:-l, y’, y] (a; # x’). We add d - 1 paths: 

is disjoint with the other d - 2 because [as, . . . , a;- , y] 
does not intersect any path, [y’, ,ab] have length p 
and a!: is not used to  arrive to y any other path.(cr: 
exist because (y) has d vertices, and we have to avoid 
x and the ones used by the other paths, which are d-2 ) .  

If y # z’ and z = y’, then (x,y) = (y’,y). Here 
we discard the arc ( z , y )  and the path by (z:x’): 
[z,z’, a$, . . . ,a;, y] (a; # y’). To have d - 1 path we 
add: [z, a;, . . . , x’, a;, ,a; ,y] (ai # d). This path 
exist and is disjoint with the others by the same argu- 
ments we use when y = x‘ and x # y’. 

Now, we are going to use the above families of 
paths between vertices of KGC(p,d,dp + 1) to con- 
struct paths in KGC(p, d ,  dp+k + dk). 

As KGC(p, d ,  dPfk + dk) = Lk(KGC(p, d :  d P  + 1)): 
we can give for two adjacent vertices U and v the fol- 
lowing expressions: 

and [z,a4,. . . , a p P l , y  t ‘  , yj (a; # 

[x, ai, . . . , ap-l S I  , y , CY;,  . . . , ab, y] (ab # y’). This path 

U = (xO,xl,. . . , xk) 
= (xl,...,xk,xk+l) 

with ZO, . . . , xk+l E V(KGC(p,  d,  d p  + 1)). 
An evident path from U to  v is the arc ( ~ ~ 2 . ) :  

[xo ,x i ,  . . . ,xk,xkfl]. For the others paths: the general 
expression is: 

[xO,zI,...,zk,al,aZr.. . ,ar,xl,XZ,. . . ,xk+l] 

with r 5 2p+ 2. That is, we need disjoint paths 
from x k  to  2 1  in KGC(p,d,dp + 1) in the form: 
[ x k ;  a ,  ~ u2,. . . ,a,, I C ~ ]  with r 5 2 p  + 2, and avoiding 
( z k , z i ; + l )  and ( I C ~ , Z ~ )  to be disjoint. We are going to 
use the paths of the above subsection.Taking 5’ = xk+l 
and y’ = xo we have: 

If IC -p 0, d ( x k ,  xl) = I , p +  1 so they are in adjacent 
parts of KGC(p, d, dP + i), and there are d - 1 paths 

from x k  to 21 of length at most 2p + 1, avoiding the 
arcs (zk, zk+l) and (x0,xl). 

If k -p TI 15 T < p -  1, d(xk ,x1)  T - l , p - r +  1 
so they are in non adjacent sets of KGC(p, d ,  dP + l), 
and there are d - 1 paths from x k  to z1 of length at  
most 2p + I, avoiding the arcs (zk, 5k+1) and ( x o , ~ ~ ) .  
Moreover, at most one have length 2p + 1. 

Now, from a given path [xk, a l ,  a2 , .  . . ,a,, xl] in the 
family calculated, then we take a path in the form: 

[xO,x11.. . ,xki al,a2, .  . . . ar,xl ,xZ,.  . . ,xk+l] 

wich has the conditions for KGC(p, d ,  dP+k + d k  1. 
If 1 5 k 5 p - 1, is not possible to have k -p 0, so xk 
and x1 are not in adjacent partite sets. 
If IC = 0, KGC(p,d,dp+‘ + dk) = K G C ( p , d , d p  + 1) 
and the problem is just studied. 
We have to prove that the paths induced in 
KGC(p,d,dp+k + dk) by the paths constructed in 
KGC(p,d,dp + 1) are disjoint. Observe that the for- 
mat of the path in KGC(p, d ,  dP+k + dk) induced by 
the path [xk, a l , .  . . , a r r x l ]  in KGC(p, d, dP + 1) is 

quence, we can work as we do with the BGC(p, d,  d k ) ,  
proving the independence when the paths have the 
same length, and extending the result to the general 
case. Once again, by induction on k we extend the 
result to the general case: 

[XO, XI,. . . , xk, al, . . . ,U,, 51,. . . , Zk, xk+1]. As a conse- 

Theorem 4.4 
Let u , v  E V(KGC(p,d,dp+k + d k ) ) .  There exzst d 
dzsjoant paths f rom U to  v wath length less or equal than 
‘zp + k + 1. Moreover, at most one of them have length 
Ip + k + 1. 

5 .  Routing in BGC(p,d>d‘“) 

We are going to use the sets of paths constructed 
in Section 3 to construct routing algorithms for 
BGC(p, d ,  dk). We refer [3] for a more detailed study 
about algorithms implementation for fault-tolerant 
communications. 

We assume that before running the routing algo- 
rithms, other algorithm was running on the network. 
These algorithms recognize the faulty elements (nodes 
and links), giving a list of them as output. Note that 
this is not a restriction since is the most common way 
in wich routers work when no acknow!edge messages 
are sent. 

As BGC(p, d, dk+’) = Lk(CP @ I<:), two given ver- 
tices U and ‘U could be represented by sequences: 

U = (c l , ,  . . , C T , ~ O :  a l , . . .  ,ak-r ) l  

= (ao, a i , .  . . ,  CL^-?, b l ,  . . . , b,) 
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with all coefficients in C’ @ Kd+, and T the  distance 
from U to  U. 

In the case T = 1 we just have a description of the 
minimum length paths from U to  U. In other case, we 
can consider vertices U‘ and U’ in BGC(p, d ,  dk -T )  given 
by: 

U’= (C l ,aO~al r - . . ,~k -T)  

v l =  (aO,ali.. . ,ak-TlbT) 

with all coefficients in C, 8 Kd+. 
Now, d(u’, U’) = 1 and another time, we know the paths 
from U’ to Y’ and can go from U to v by the paths from 
U‘ to VI.  

Then, a briefly descrition of the routing algorithm 
could be: 

Input: U ,  v vertices in BGC(p, d, d k f l )  

0 Calculate T ,  the distance from U to ‘U. 

0 If T = 1 choose the pat,hs of minimum length from 
the constructed above wich do not intersect the 
list of faulty nodes. 

0 If T # 1 find vertices u’:v’ as above. Construct 
paths between U’ and U’ and extend them to paths 
from U to  U. Choose the one of minimum length 
from the paths wich does not have any faulty ele- 
ment. 

Let us discuss how to  implement each item in the 
algorithm. 

To calculate the distance between the input vertices, 
the most natural way is to compare the sequences that 
represent them. Once we have done the comparisons 
we have: 

T = d(u,v)  
21 = C 1 , .  . . , C T ,  al:. . . , a k - r f l  

V 1 a l l . .  . ,ak-T+l, b l , .  . . , b, 

Now, as we know the distance. we know also d disjoint 
paths from U to U .  In fact, if they are adjacent, we 
have a direct construction of them. If not; we take two 
adjacent vertices: 

U‘ = C T ,  al,. . . : ak--r+l  
‘U‘ = a l l . .  . , ak-T+l, bl 

and from tha pat,hs between them, arise the paths we 
want. 

At this point. we have to choose a path of minimum 
leiigtli in the above set wich not contain neither a faulty 
node nor a faulty arc. 

V’e can do it in several ways. A first idea could be to 
construct all paths by lncreasilig order of their lengths, 

and begin inpecting the shortest until we find one with 
the conditions desired. 

A second option could be to  compare the nodes and 
arcs involved in each path with the faulty ones dur- 
ing its construction. That is, could be not necessary 
to construct the whole set. So, we can construct one 
path, check the conditions, and only if it is necessary, 
we proceed constructing another ones. Also, we can 
improve this idea, checking the conditions during the 
construction. That is, in the precise moment we add a 
node (and obviously an arc) we check that it is not a 
faulty one. So, we have t o  take care in not add a faulty 
element. In the case that we have no other alternative, 
we discard this construction and begin another. 
Also, to make this second option efficient, we have to 
construct tha paths by increasing order of their lengths. 

This is the basic idea we propose. This algorithm 
must be implementing according to  the considerations 
at the beginning of the section. 

Example: Let d = 7, p = 4 and k = 5. 

BGC(4,7,117.649) = L5(C4 8 K, f )  

Suppose we want to find a path from U to v: with: 

= (3, 1)(4,6)(11 3)(2,0)(3,2)(4,6) 
= (113)(2,0)(312)(416)(1, 1)(2,3) 

A s  d(u,v) = 2, we cannot use the direct construction 
of the paths, so we have to construct them recursively. 
from paths between vertices a t  distance 1. Let: 

21’ = (4,6)(113)(2,O)(3,2)(4,6), 
‘c’ = (113)(210)(3,2)(4,6)(lil) 

Now, as d ( u ’ , d )  = 1, applying the base construc- 
tion, we obtain 7 paths from U‘ to U’: 

0 The arc ( u ’ , ~ ‘ ) :  

0 Paths coiist,ructed from paths from (4; 6 )  t,o (1: 3 ) :  

with as # 1 , 3  and a; # 6. 

These paths give rise to. 
(4. 6)(1.3)(2.0)(3.2)(4, 6)(1, 3)(2.0)(3,2)(4. G ) ( 1 ,  l)] 
,.’(llcrs)(2.a~)(3.c~)(4,~~)w‘J, with as # 1.3  and 

From thesr 7 paths from U’ to U‘, by the resursivc 
procedure we obtain the following 7 paths from 11 to U 

0: # 6 
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6. Routing in KGC(p, d ,  dp++k + d k )  

In the same way we work in Section 5, we are going 
to define here a routing strategy for KGC(p, d ,  dp+k + 
d k ) .  So, we make use of the paths constructed in Sec- 
tion 4. As there, we assume that we have two list 
containing faulty nodes and faulty links. 
AS KGC(p, d,  d p f k  + d k )  = Lk((KGC(p, d,  dp+’)), 

two vertices U and v could be represented by sequences: 

U = ( C l , .  . . ,cy, a() ,  U l ,  . . . , U k - 7 )  

= (a01 al ,  . . 1 a k - r ,  61, .  . 16,) 

with all coefficients in KGC(p,d,dpil)  and T the 
distance from U to 71. 

In the case T = 1 we just have a description of the 
minimum length paths from U to ‘U. In other case, we 
can consider vertices U‘ and U’ in KGC(p: d ,  d P + k  + d‘) 
given by: 

U /  = (cl; a(), al;. . . , a k - r )  

U /  = (UO, Ul, . . 1 a k - 7 1  6,) 
with all coefficients in KGC(p: d ,  dP+’). 
NOW, d(u ’ :  7 1 ’ )  = 1 and another time, we know the 

paths from U,’ to U’ and can go from U to U by the paths 
from U’ to U’.  

Then, a briefly descrition of the routing algorithm 
could be: 

Given two vertices U :  U in KGC(p, d ,  dp+k + d k ) :  

0 Calculate T ,  the distance from U to U. 

0 If T = 1 choose the paths of minimum length from 
the constructed above wich do not intersect the 
list of faulty nodes. 

o If T # 1 find vertices u’,d as above. Construct 
paths between U’ and U’ and extend them to  paths 
from U to ‘U. Choose the one of minimum length 
from the paths wich not intersect the list of faulty 
nodes. 

That is, the routing strategy is the same that for 
BGC(p: d ,  d‘). Again, the considerations to  implement 
the routing algorithm are the same. 

Example: Let take d = 4, p = 5 and k = 6. 

KGC(5,4,1025) = L4(C5 @ GK(4,1025)) 

We want a path from U to ‘U, with: U = 
(5,77)(1.715)(2,814)(3,182)(4,297) 

(5,170)(1,681) 
v = (3.182)(4,297)(5,170)(1,681)(2,860) 

(3,660)(4,435) 

As d(u. U) = 3, we have to construct the paths recur- 
sively, from paths between vertices at  distance 1. So, 
we determine: 

U’ = (2: 814)(3,182)(4,297)(5,170)(1,681) 
C’ = (3> 182)(4,297)(5,170)(1,681)(2,860) 

Now. as d(u’:w’) = 1, applying the base construc- 
tion, we obtain 5 paths from U’ to U’: 

The arc (d.d) 
[(2.814)(3,182)(4,297)(5,170)(1,681)(2,860)] 

Paths from paths between (1, 681) and (3,182): 
[U 681)(2, 4 ’ ) ( 3 ,  0 i1 ) (4 ,  4 ’ ) ( 5 ,  Cy;’ )  

(1, ~ ? ) ( 2 ,  ffi2)(3,  182)] 
giving rise to. 
[.’(2.Q$’)(3.4’)(4, ~r~’)(5,ct~’)(l,~r~’)(2,~~~)w~] 

From these 5 paths from U’ to U’, by the resursion 
we obtain the following 4 paths from U to w: 

If ((1.681); (2,860)),((2,814), (3; 182)) are in the 
same path, we discard it,. 

If ((1.681), (2,860)),((2,814), (3,182)) are in dif- 
ferent paths, we discard both, and add the path 
obtaining by replacing Lhe arc ((1,681), (2,860)) 
by a cycle of length p, in the path that contain it.  
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l4? 4 ? ) ( 3 , 4 ) ( 4 , 4 ) ( 5 ,  &(1, at,)(% 860) 
(3, a? )(4, a2 )(5, @)( 1, as2 )(2, a? 1.1 

Now, we have constructed d paths from U to U,  and 
only rest to select the one of minimum (or minimal) 
length wich do not contain faulty elements, according 
with the considerations in the above section. 
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