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Abstract

A problem in the design of bus interconnec-
tion metworks is to find directed hypergraphs
with minimum diameter for fized values of the
order, processor degree and bus size. In this
paper we propose the partial line hyperdigraph
as a technique for it. The partial line hyperdi-
graph is related to the line hyperdigraph [1], the
partial line digraph [6] and the line digraph [7].
Partial line hyperdigraphs have also good con-
nectivity, expandability and easy routing. Spe-
cially interesting results are obtained for the
generalized Kautz hyperdigraphs.

1 Introduction

Hypergraphs are a useful generalization of
graphs for Computer Science and Discrete
Mathematics [8]. We focus on its application
to designing bus networks. That is, commu-
nication systems made up of buses communi-
cating several processors. Bus networks have
better reliability and performance that those
based on point-to-point connections. They
are modeled by hypergraphs (bidirectional
buses) or directed hypergraphs (unidirectional
buses). We deal with directed hypergraphs,
also called hyperdigraphs.

A processor can only be connected to a
limited number of buses. A bus can only ac-
cept a given number of connections to proces-

sors. Then, to communicate some nodes it is
necessary to traverse intermediate nodes, and
the transmission delay depends on such num-
ber of nodes. Thus, a problem is to connect by
buses an arbitrary number of processors mini-
mizing the transmission delay. This gives rise
to the need of hyperdigraphs with arbitrary
order, maximum processor degree, maximum
bus size and minimum diameter. A powerful
technique for this problem is the line hyper-
digraph proposed in [1]. As particular solu-
tions, in [3] were introduced the generalized De
Bruijn and generalized Kautz hyperdigraphs.
They are iterated line hyperdigraphs. In this
work we present a generalization of the line
hyperdigraph technique which makes it more
versatile.

Some of the basic definitions and nota-
tion for the following are in the next Section.
The definition of the partial line hyperdigraph
and its relation with some other known tech-
niques involving hyperdigraphs and digraphs
is presented in Section 3. In Section 4 is shown
its usefulness to the design of bus interconnec-
tion networks. The application to Kautz hy-
perdigraphs is in Section 5.

2 Preliminaries
A directed hypergraph, or hyperdigraph H is

a pair (V(H),E(H)), where V(H) is a non-
empty set of vertices, and E(H) is a set of



ordered pairs of non-empty subsets of V(H),
called buses. If E = (E~,E™) is a bus, we
say that [/~ is the in-set, /T is the out-set
of F, and that F joins vertices in = to ver-
tices in BT . Tts in-size( out-size) is the cardinal
of E=, |[E~|(JET|). If v be a vertex, the in-
degree( out-degree) of v is the number of buses
containing v in the out-set(in-set), and is de-
noted by d~ (v)(d™(v)).

If H is a hyperdigraph, its order is the
number of vertices, |V(H)|, denoted by n(H),
and m(H) will be the number of buses. The
maximum in-size and mazimum oul-size of H
are respectively defined by

sT(H)=max{|E"|: E€&(H)},
sT(H) =max{|ET|: F€ &(H)}

Similarly, the maximum in-degree , maximum
out-degree of H are

d (H)=max{d (v):v e V(H)},
dT(H) = max{d™(v) : v € V(H)}

We denote s(H) = max{sT(H),s (H)} ,
d(H) = max{d*(H),d (H)}.

A path of length k from a vertex
u to a vertex v in H is an alternat-
ing sequence of vertices and buses u =
vo, 1,01, Fa,ve, ..., By, v = v such that v; €
E_ ., (i=0,...,k—1)and v; € E, (i =
1,...,k). The distance from w to v is the
length of the shortest path from u to v. The di-
ameter of H, D(H), is the maximum distance
between every pair of vertices of H.

A hyperdigraph is connected if there ex-
ists at least one path from each vertex to any
other vertex. The vertex-connectivity, k(H),
of a hyperdigraph H, is the minimum num-
ber of vertices to be removed to obtain a non-
connected or trivial hyperdigraph (a hyperdi-
graph with only one vertex). Similarly is de-
fined the bus-connectivity, A\(H).

The dual hyperdigraph, H*, of a hyper-
digraph H has its set of vertices in one-to-one

correspondence with the set of buses of H, and
for every vertex v of H it has a bus, (V—,VT),
such that a vertexe € V™ ifand only if v € BT
and e € VT if and only if v € £~

The underlying digraph of a_ hyperdi-
graph H is the digraph H = (V(H), A(H))
with V(H) = V(H) and A(H) = {(u,v) :
dE € &(H),u € E~,v € ET}. That is, there
is an arc from a vertex u to a vertex v in H
if and only if there is an bus joining u to v in
H. So, paths in H and H are in correspon-
dence, and this implies D(H) = D(H) and
K(H) = k(H).

The line hyperdigraph of H [1] is the hy-
perdigraph LH = (V(LH),E(LH)),

V(LH) = UEGE(H){(UEU) S Ei,U S E+}
E(LH) = Uyepn L (EvF) cv € EX,v e F}
(

with (FvF)” = {(wFv) : w € E~} and
(EvF)T = {(vFw) : w € FT}. Note that
if H is a digraph, LH coincides with the line
digraph of H [7]. We refer [1] for other prop-
erties of the line hyperdigraph technique.

3 The technique

Given a hyperdigraph H = (V(H),&(H)) with
minimum in-degree at least 1 for any set V' of
vertices of LH such that {v : I(uFv) € V'} =
V(H), the partial line hyperdigraph of H will
be the hyperdigraph LH = (V(LH),E(LH)),

V(LH) = V'
E(LH)={(EvF):ve F ,FueV(H):
(uBv) € V'}
(EvF)T ={(vFw) : (vFw) e V'}U
{(v'F'w) 1w e F*,(vFw) ¢ V'}
(EvF)” ={(uEv) :uwe E ,(uFv) € V'}

That is, (FvF)™ contain all the vertices in the
form (vFw) of V', and one arbitrary vertex,
(V' F'w), if (vFw) is not in V',

That is, the partial line hyperdigraphs



depends on the choose of V' and also in the
way that the out-sets of the buses are con-
structed.

Note that always exists a set V' with
{v: (uFv) € V'} = V(H), because the mini-
mum degree of H is at least 1.

Particularly, observe that in the case
[V'| > ds, we can take the out-set of the buses
in such a way that £(LH) = E(LH). In fact,
for any vertex v and any bus F of H such that
v € ET and (uFv) € V', it is possible to take
(EvF)t ={(vFw) : (vFw) € V'}U{(v'Fuw) :
we FT, (vFw) ¢ V'}.

Notice that if H is a digraph, £LH co-
incides with a partial line digraph. Also, if
V' = V(LH) then LH is LH. So, the partial
line hyperdigraph technique is a generalization
of the line hyperdigraph technique [1], the par-
tial line digraph [6], and consequently, the line
digraph [7].

Next, we show some useful relations of
this technique to digraphs.

Proposition 3.1 Let H = (V(H),E(H))
with minimum d > 1, and V' a set of vertices
of LH such that {v : I(ubv) € V'} = V(H).
For any vertex (wFv) and any bus (FEvF) of
the partial line hyperdigraph of H, LH,

dy y (uBv) = dp (v);

sty (BvF) = sh(F). O

Proposition 3.2 Lel H be a hyperdigraph
with minimum in-degree d > 1. There exists
a_set of vertices of LH, and a_set of arcs of
H, such that with these sets LH and LH are
isomorphic.

Proof: Given a set V' of vertices of LH such
that {v: (uFv) € V'} = V(H). Let E' be the
set of arcs of H defined by E' = {(u,v) : IF €
E(H), (uEv) € V'}. With these sets there is a

trivial isomorphism between LH and £H. O

4 The (d,s, N)-problem

In [4] there is a Moore like bound for the order
of a hyperdigraph of diameter D, maximum
out-degree d and maximum out-size s:

N < 1+(ds)+(ds)2+. ..+ (ds)P = "1
From this arises the following lower bound for
the diameter:

(logg(N(ds—1)+1))— 1< D.
We will show the good behavior of the pro-
posed technique for such problem.

The order of the hyperdigraph LH is
the cardinal of V', and it is chosen with the

condition {v : (uEv) € V'} = V(H). Then,
V(H)| < [V(LH)| < [V(LH).

The partial line hyperdigraph preserves
the maximum out-degree of H. In fact,
df,(uBv) = dj;(v) for any vertex (uEv) of
LH. Also, the out-size of H remains constant
since for every bus (FuF) of LH, s}, (EvF) =
s5;(F) (the in-size of H is preserved too).
Then, if H is d-regular, LH is also d-regular.

So, if the out-size of all buses of H is s,
(V(H)| < [V(LH)| < |[V(H)|ds

Since D(H) = D(ﬁ) for every hy-
perdigraph H, by Proposition 3.2 we have
D(LH) = D(LH). Now, H is a digraph and
by [6]: D(H) < D(CH) < D(H)+ 1. So,
D(H)< D(LH)< D(H)+1=D(LH).

From all the above considerations about
the order, maximum out-degree and maximum
out-size, we can state the following result:

Theorem 4.1 Let H be a hyperdigraph with
mazimum oul-degree d > 1, mazimum out-size
s, order N and diameter D. Then the order
Ny, the maximum out-degree dp, the maxi-
mum out-size sy and the diameter Dy of any
partial line hyperdigraph LH satisfy:

N < Ny < Nds; dey = d;
D<D,<D+1. sy = 8.0



4.1 Connectivity

To show that the partial line hyperdigraph
tends to increase the conmnectivity (with the
minimum degree of the partial line hyperdi-
graph as a lower bound), first, we extend a use-
ful concept introduced in [6] for digraphs. A
hyperdigraph H has no redundant short paths
when there is at most one path of length one
or two between every pair of vertices (differ-
ent or not) of H. Notice that under this
restriction we can still work with interesting
hyperdigraphs. For instance, the generalized
De Bruijn hyperdigraphs and the generalized
Kautz hyperdigraphs [3] have no redundant
short paths.

Lemma 4.2 Lel H be a hyperdigraph. Then,
H has no redundant short paths if and only if
H has no redundant short paths. O

Theorem 4.3 Lel H be a hyperdigraph with
minimum in-degree d > 1 and minimum in-
size s. If H has no redundant short paths:

min{k(H), d(LH)s} < k(LH)

Proof: By Lemma 4.2, H has no re-
dundant short paths, so by the bound on
the connectivity of partial line digraphs [6],
min{x(H),d(LH)} < &(LH). Since x(H) =
k(H), then min{x(H),d(LH)s} < k(LH). O

For the bus-connectivity the analogous
bound holds, but to prove it, we need the fol-
lowing result of [1]:

Lemma 4.4 Lel H be a hyperdigraph with
bus-connectivity \. Then, every vertex v in
H is on X\ bus-disjointl cycles.O

Theorem 4.5 Let H be a hyperdigraph with
minimum in-degree d > 1. Let V' be a set of
vertices of LH, |V'| > ds, and LH a partial

line hyperdigraph with E(LH) = E(LH). If H
has no redundant short paths:

min{ A\(H), d(LH)} < NLH)

Proof: If min{\(H),d(LH)} = d(LH), let us
see that any set I of buses of L'H with |F| <
d(L'H) cannot disconnect LH. In fact, for any
path between two given vertices of LH, let us
say, (WEv) and (zFy), a path LP in LH is in
correspondence with a path P between v and
x in H in the following way:

LP = (uFv), (EvE"), (v E'1v), (B0 E'),
e (W E ), (B F), (2 FYy)
P= U7E17UI7E27027 s 7En717vn717E’n7x

NOW7 if = {(EiUiFi) T = 1,... 77"},
0 <r < d(V'H), is a disconnecting set of LH,
the set F' = {F;, : ¢« = 1,...,r} is a dis-
connecting set of H, which contradicts that

min{\(H),d(CH)} = d(LH).

If not, let see that A(H) < A(LH).
For this, is enough to show that a set of
A bus-disjoint paths in H induces a set
of X\ bus-disjoint paths in LH, if A <
min{A(H),d(LH)}. Let (uFEv) and (zFy) be
two different vertices of LH. To construct A
bus-disjoint paths from (wFEv) to (zFy) in LH
from X bus-disjoint paths from v to x in H, we
consider two cases:

1. If v # z, we have A paths from v to z:
P =v, B} vt EY b,
7E$‘L,;717U%.;717E7iwx
with 1 <17 < A. Each path P; give rise to
a path from (uEv) to (zFy), LP; in LH
defined by: . .
LP;, = (ubv), (FvE"), (W' E'jvY),
(B'iy0iE'S), ... (B, 2'F), (xFy).
It is possible to construct £LP; because for
every vertex of H there exists at least
one bus arriving to it. These paths are
bus-disjoint because the paths in H are



also, and because of the restriction to
hyperdigraphs with no redundant short
paths. Besides, these paths are vertex-
disjoint, because if two different paths
LP;, LP;, have a common vertex, let us
say, (V1 Brivys) = (s Blgvlig),
then should exist in H two different paths
with length 1 or 2 from v',; = vl to
U};+1 = Uﬁ+1, contradicting the no redun-
dant short paths restriction.

2. If v = x, we proceed as before but with
bus disjoint cycles in H. By Lemma 4.4,
if the bus-connectivity is A, each vertex of
H is in A bus-disjoint cycles. In the same
way as we do with paths P;, we can obtain
A cycles in LH. Again, since the original
cycles are bus-disjoint and H has no re-
dundant short paths, these new cycles are
bus-disjoint also. O

4.2 Expandability

Given two hyperdigraphs H and H’, on N
and N' vertices, respectively, N < N’, we de-
fine the index of expandability of H to H’',
e(H,H'), as the minimum number of buses
that has to be modified or removed from H
to obtain H’ by adding N’ — N vertices and
some appropriate buses, if it is necessary.

That is, the index of expandability mea-
sures the necessary modifications of buses of
H, to obtain a sub-hyperdigraph H'.

Let £, H be a partial line hyperdigraph
of H with order n. Next we show that any
L, H has good expandability to some L, 1 H.

Theorem 4.6 Let H = (V(H),E(H)) be a
hyperdigraph with maximum in-degree d > 1.
For any partial line hyperdigraph L,H on n
vertices, [V(H)| <n < |V(LH)| — 1, there ez-
ists a digraph L,.1H, such that the index of
expandability of L, H to L,.1H salisfies:

e(ﬁnG, £n+1G) S 2d

Proof: Let V' be the set of vertices of £, H.
The hyperdigraph £, H can be obtained
from £, H by the following algorithm:

a) Choose a vertex (uFv) of LH out of V'
Since |V'| < |[V(LH)| — 1, it exists.
b) Add the vertex (uEv) to LH.
¢) For every bus of LH, (FuFE), replace in
their out-sets, the vertex (v'E'v) by (wFv).
d) For every bus F of H,if (EvF') is not a bus
of LH, add it, with
(EvF)T ={(vFw) : (vFw) e V'}U

{(W'F'w) :we F*,(vFw) ¢ V'}.
(BEvF)” ={(ubv) :u € E-,(ubv) € V'}.
For each F such that (EvF) is a bus of LH,
put the vertex (wFv) in the in-set.
We only add new buses or replace the existing
ones in steps ¢) and d), so the index of expand
ability is given by the number of changes there.
Since the maximum degree is d, this number
is at most 2d. O

The above proof gives an algorithm to
expand partial line hyperdigraphs. With a few
changes it can be used to decrease the number
of vertices.

Also in some applications, it could also
be useful to measure the number of vertex-to-
vertex connections that have to be modified to
add components. From the above algorithm:

Corollary 4.7 Let H = (V(H),E(H)) be a
hyperdigraph with maximum in-degree d > 1
and maximum out-size s. For any partial line
hyperdigraph L,H on n wvertices, |V(H)| <
n < |V(LH)| — 1, there exists a hyperdigraph
L,1H, such that the connections that have to
be modified to transform L,H to L,.1H are
at most ds. O

5 Applications

Let us see the application of the partial
line hyperdigraph technique to the general-



ized Kautz hyperdigraphs, introduced in [3].
There it was proved that LGK(d,n,s,m)
GK(d,dsn,s,dsm) and éf\((d,n,s,m) is the
generalized Kautz digraph, GK (ds,n) [10, 11].

Theorem 5.1 For any posilive integers d,n,
s,m, with dn =, 0, sm =, 0.
If D(GK(d,n,s,m)) > 4, then:

k(GK(d,n,s,m)) = ds,n multiple of (ds + 1)
and ged(n,ds) > 1;
k(GK(d,n,s,m)) = ds — 1, otherwise.

Proof: k(GK(d,n,s,m)) = m(él\((d,n,s,m))
which coincides with x(GK(ds,n)). From [9]
if D(GK(ds,n)) > 4, it has maximum
vertex-connectivity (ds) when n is a multi-
ple of (ds + 1) and ged(n,ds) > 1, and
ds — 1 otherwise. Since D(GK(d,n,s,m))
D(GK(d,n,s,m)) = D(GK(ds,n)), we have
the result. O

Corollary 5.2 For any positive integers d,n,
s,m, with dn =, 0, sm =, 0.
Let H be GK (d,n,s,m) and D(LH) > 4:

K(LH) > d(LH)s,n multiple of (ds+ 1)

and ged(n,ds) > 1;
K(LH) > min{ds — 1,d(LH)s}, otherwise.
Proof: There are not redundant paths, so
by Theorem 4.3: k(LGK (d,n,s,m)) is at least
min{xk(GK (d,n,s,m)),d(LGK(d,n,s,m))s}.It

remains to apply the above theorem. O

Since H is a digraph, n(ﬁ) < )\(ﬁ) [5],
and it is easy to see that A(H) < A\(H)s, sim-
ilar results are valid for the bus-connectivity.

Theorem 5.3 For any posilive integers d,n,
s,m with dn =, 0, sm =, 0.
If D(GK(d,n,s,m)) > 4, then:

MGK(d,n,s,m)) = d,n multiple of (ds+1)
and ged(n,ds) > 1;
MGK(d,n,s,m))=d or d— 1, otherwise.

Corollary 5.4 For any positive inlegers d,n,
s,m, with dn =,, 0, sm =, 0.
Let H be GK(d,n,s,m) and D(LH) > 4:

MNLH) > d(LH),n multiple of (ds + 1)
and ged(n,ds) > 1;
AMLH) > min{d — 1,d(LH)}, otherwise.O

We have studied the connectivity of the
partial line hyperdigraphs of the generalized
Kautz hyperdigraphs. Now, let us see other
interesting properties of such hyperdigraphs.

Theorem 5.5 Let H be a hyperdigraph with
minimum in-degree d > 1. There exists a set
of vertices of LH, and a set of vertices of L>H,
such thal with these sels il is possible to con-
struct LLH and LLH to be isomorphic.

Proof: The vertices of LLH are in correspon-
dence with the buses of LH, so there are two
kinds of vertices:

1. (uBv)(BEvF)(v'F'w), withv € F~,we FT
and (vFw) ¢ V(LH)

2. (uBv)(EvF)(vFw), withv e F~,we FT
and (vFw) € V(LH)

Clearly, for any choice of vertices of LH, there
are different digraphs £LH and LLH. For a
given digraph LLH, we construct a set of ver-
tices of LH by the rules:

L. If (uBv)(EvF)(v' F'w) € V(LLH), we take
(wFEv)(BvF)(vFw)

2. If (uBw)(BEvF)(vFw) € V(LLH), we take
(wFEv)(BvF)(vFw)

Applying the partial line technique to
LH with this set of vertices, it is possible to
construct LLH and LLH to be isomorphic. O

Corollary 5.6 Let H be a hyperdigraph with
minimum in-degree d > 1. There exisls a
set of vertices of LH, and a set of vertices
of L**YH, such that with these sets, for any



integer k > 1, it is possible to construct L*LH
and LL*H to be isomorphic.

Proof: By the above theorem, there exists a
set of vertices of LH, and a set of vertices of
H, such that LLH and LLH. (The result for
k =1.) We are going to prove by induction on
k that the same holds for any k > 1. Let us
assume that L*LH and £L'H are isomorphic
for any integer ¢, 1 < ¢ < k — 1, and we are
going to prove L* LH and LL*H are so:

LLFH = LIF'LH ~ LF'LLH ~ L'LH. O

LFGK(d,n,s,m) = GK(d, (ds)*n, s, (ds)*m),
for any positive integer & [1]. Now, for an
integer, o, 1 < a < ds, notice that a par-
tial line hyperdigraph on an(ds)* vertices,
LGK(d, (ds)*n, s, (ds)*m) holds:
LGK(d,(ds)*n, s, (ds)*m) =

LL*GK(d,n,s,m) = L*LGK(d,n,s,m).
The number of buses of LGK (d,n,s,m) is the
number of paths of length 1 in its dual [1], an.
In Section 4 it was proved:

L. df,; (uBv) = dj; (v) V(uEv) vertex of LH.
2. 8}y (EvF) = s;(F) Y(EvF) bus of LH.

So, some digrahs with the same prop-
erties for the (d,n)-problem that some Imase-
Itoh or generalized Kautz digraphs can be ob-
tained as partial line digraphs of Kautz di-
graphs.(We recall that the (d, n)-digraph prob-
lem is the same that the (d, 7, 1)-hyperdigraph
problem, since for s = 1, hyperdigraphs are di-
graphs). Particularly, if we let n to be a multi-
ple of ds+1, we can obtain those of maximum
connectivity by the application of the corre-
sponding partial line operator.
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