
Electrical Power Networks
Combinatorial Optimization

Research Collaboration

Electrical Power Networks, Combinatorial Optimization &
Research Collaboration

Daniela Ferrero

Texas State University-San Marcos, TX

Modern Math Workshop 2023

Daniela Ferrero Modern Math Workshop 2023



Electrical Power Networks
Combinatorial Optimization

Research Collaboration

Electrical Power Networks

• Link sources of electrical power and consumers of electricity.

• Must be continuously monitored to prevent blackouts, power surges and overall, to

guarantee certain quality of service.

• The state of a network is defined by the magnitude and phase angle of the

electromagnetic wave at each and every one of its nodes and links.

• A Phasor Measurement Unit (PMU) measures magnitude and phase angle of the

electromagnetic wave at the network location where it is placed.

• A set of PMUs are placed at strategically selected network locations and their

readings are synchronized via GPS (Global Positioning System).

• The PMU readings are then combined to calculate the magnitude and phase

angle of the electricity wave at any network location without a PMU.
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Monitoring an Electrical Power Network

• A PMU placement is feasible if the PMU readings are sufficient to determine

the state of the network at any location without a PMU.

• A feasible PMU placement is optimal if it minimizes the number of PMUs.

• In electrical engineering, the PMU Placement Problem consists of finding an

optimal PMU placement for a given power network.

• The Power Domination Problem was introduced in Graph Theory by Haynes,

Hedetniemi, Hedetniemi & Henning so that:

Electrical Engineering Graph Theory
electrical power network - graph

feasible PMU placement - power dominating set

optimal PMU placement - minimum power dominating set

optimal number of PMUs - power domination number

solution PMU placement problem - solution power domination problem
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Power Domination

• Haynes, Hedetniemi, Hedetniemi & Henning (2002) introduced power domination

in terms of observation rules for vertices and edges of a graph.

• Brueni & Heath (2005) obtained an equivalent definition of power domination only

using observation rules for vertices.

• Aazami (2008) introduced discrete time intervals to study power domination.

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v1 v2 v3 v4

v9 v8 v7

v5v6v10

S = { v2, v5 }
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v1 v2 v3 v4

v9 v8 v7

v5v6v10

S = { v2, v5 }
P  

1
 [S ] = { v1,v2,v3,v4,v5,v6,v9 }
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v1 v2 v3 v4

v9 v8 v7

v5v6v10

S = { v2, v5 }
P  

1
 [S ] = { v1,v2,v3,v4,v5,v6,v9 }

P 
2

 [S ] = P 
1

 [S ] ∪ {v8,v10 }
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Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v1 v2 v3 v4

v9 v8 v7

v5v6v10

S = { v2, v5 }
P  

1
 [S ] = { v1,v2,v3,v4,v5,v6,v9 }

P 
2

 [S ] = P 
1

 [S ] ∪ {v8,v10 }
P 
3

 [S ] = P 
2

 [S ] ∪ {v7 }
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Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v1 v2 v3 v4

v9 v8 v7

v5v6v10

S = { v2, v5 }
P  

1
 [S ] = { v1,v2,v3,v4,v5,v6,v9 }

P 
2

 [S ] = P 
1

 [S ] ∪ {v8,v10 }
P 
3

 [S ] = P 
2

 [S ] ∪ {v7 }
S  power dominating set
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v5v10 v6

v1 v2 v3 v4

v9 v8 v7

S = {v4 }
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v5v10 v6

v1 v2 v3 v4

v9 v8 v7

S = {v4 }
P 
1[S] = { v3, v4, v5, v6, v8, v9 }
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v5v10 v6

v1 v2 v3 v4

v9 v8 v7

S = {v4 }
P 
1[S] = { v3, v4, v5, v6, v8, v9 }
P 
2[S] = P 

1[S] ∪ {v2, v7}
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v5v10 v6

v1 v2 v3 v4

v9 v8 v7

S = {v4 }
P 
1[S] = { v3, v4, v5, v6, v8, v9 }
P 
2[S] = P 

1[S] ∪ {v2, v7}
P 
3[S] = P 

2[S] ∪ {v1, v10 }
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v5v10 v6

v1 v2 v3 v4

v9 v8 v7

S = {v4 }
P 
1[S] = { v3, v4, v5, v6, v8, v9 }
P 
2[S] = P 

1[S] ∪ {v2, v7}
P 
3[S] = P 

2[S] ∪ {v1, v10 }
S  power dominating set
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v5v10 v6

v1 v2 v3 v4

v9 v8 v7

S = {v8 }
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v5v10 v6

v1 v2 v3 v4

v9 v8 v7

S = {v8 }
P 
1[S] = {v4, v7, v8, v9 }
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

Example:

v5v10 v6

v1 v2 v3 v4

v9 v8 v7

S = {v8 }
P 
1[S] = {v4, v7, v8, v9 }

S  not a power 
dominating set

P 
t

 [S] = P 
1[S], t > 1 
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Power Domination

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:

1. P1[S] = N[S] = S ∪ N(S)

2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

Power dominating set

A power dominating set of a graph G = (V ,E) is a set S ⊆ V such that for some
integer t, Pt [S] = V .

In any a graph G , for a given set of vertices S , there is a unique sequence {P i [S]}i≥1.

Power propagation time of a set

The power propagation time of a power dominating set S of G = (V ,E) is
ppt(G , S) = min{t integer : Pt [S] = V }.

ppt(G ,S) indicates the amount of data that must be transmitted when using the

PMU placement defined by S to monitor the power network modeled by G .
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Definitions

Power Dominating Set Problem (PDS)
Instance: A graph G and a positive integer k

Question: Does G have a power dominating set S such that |S | ≤ k?

Minimum power dominating set

A minimum power dominating set (γP -set) is a power dominating set of minimum
cardinality.

Power domination number

The power domination number of a graph G is γP(G) = |S| where S is a γP -set of G .

Power propagation time of a graph

The power propagation time of graph G is ppt(G) = min{ppt(G , S) : S γP -set of G}.

What is a name? The application to electrical power networks and the fact that

ppt(G ,S) = 1 if and only if S is a dominating set of G .
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Algorithmic Complexity

Theorem (Haynes, Hedetniemi, Hedetniemi & Henning, 2002)

The power domination problem (PDS) is NP-complete.

PDS is NP-complete

• Bipartite graphs (Haynes, Hedetniemi, Hedetniemi & Henning, 2002)
Chordal graphs

• Split graphs (Liao & Lee, 2005)

• Planar graphs (Guo, Niedermeier & Raible, 2008)
Circle graphs

PDS is polylogarithmic

• Interval graphs (Liao & Lee, 2009)
Circular-arc graphs

PDS is linear

• Trees (Haynes, Hedetniemi, Hedetniemi & Henning, 2002)

• Interval graphs known interval order (Liao & Lee 2005)

• Block graphs (Xu, Kang, Shan & Zhao, 2006)
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.
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• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.
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• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
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• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.
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• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
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• During the conference we started to work on rectangular grids.

Daniela Ferrero Modern Math Workshop 2023



Electrical Power Networks
Combinatorial Optimization

Research Collaboration

Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.

For every integer n ≥ 6,

γP(Pn × P6) = 2

Theorem (Dorfling & Henning, 2006)

For any integers n ≥ m ≥ 3, γP(Pn□Pm) =

{
⌈m+1

4
⌉ if m ≡ 4 mod 8

⌈m
4
⌉ otherwise
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.

For every integer n ≥ 6,

γP(Pn × P6) = 2

Theorem (Dorfling & Henning, 2006)

For any integers n ≥ m ≥ 3, γP(Pn□Pm) =

{
⌈m+1

4
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Power Domination

• D.T. Lee, Institute of Information Science, Academia Sinica, Taipei (Taiwan) was a
keynote speaker at CombinaTexas’04.

• At the conference he presented algorithmic results for power domination in circular
arc graphs and interval graphs.

• During the conference we started to work on rectangular grids.

For every integer n ≥ 6,

γP(Pn × P6) = 2

Theorem (Dorfling & Henning, 2006)

For any integers n ≥ m ≥ 3, γP(Pn□Pm) =

{
⌈m+1

4
⌉ if m ≡ 4 mod 8

⌈m
4
⌉ otherwise
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• In 2008, an undergraduate student taking my Honors Graph Theory course was
interested on working on an undergraduate thesis.

• The Cartesian product of graphs G and H is G□H where V (G□H) = V (G)×V (H)
and E(G□H) = {(x , x ′), (y , y ′) : x = y , x ′y ′ ∈ E(H), or x ′ = y ′, xy ∈ E(G)}.

• If Pn and Cn are respectively the path and the cycle of order n, the rectangular
n ×m grid is Pn□Pm, the cylinder of height n and girth m is Pn□Cm and the
n ×m torus is Cn□Cm.

Theorem (Barrera & Ferrero, 2011)

For any integers n ≥ 1 and m ≥ 3, γP(Pn□Cm) ≤ min{
⌈
m+1
4

⌉
,
⌈
n+1
2

⌉
} and

γP(Pn□Cm) = 2 if n = 2, 3 and m ≥ 4 or if n ≥ 2 and 4 ≤ m ≤ 7.

Theorem (Barrera & Ferrero, 2011)

For any integers n ≥ m ≥ 3, γP(Cn□Cm) ≤
{ ⌈

m+1
2

⌉
if m ≡ 2 mod 4⌈

m
2

⌉
otherwise

• Roberto Barrera, who now has Ph.D. in mathematics and is presently my colleague

at Texas State University.
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Power Domination

• In 2009, thanks to a sabbatical leave and an Erudite Fellowship, I had another
opportunity to work on power domination.

• At Cochin University of Science & Technology in Kerala (India), I worked
with Ambat Vijaykumar and Seema Varghese on honeycomb meshes.

HM (1)

HM(3)

HM (2)

Theorem (Ferrero, Varghese & Vijaykumar, 2011)

For any integer n ≥ 1 the honeycomb mesh HM(n) has γP(HM(n)) =
⌈
2n
3

⌉
.
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• The results for rectangular grids, cylinders, tori and hexagonal meshes follow
this pattern:

Given a graph family {Gn}n≥n0 for some integer n0 > 0,

1. Find minimum power dominating sets in a few of the smallest graphs of the

given family (Gn0 , Gn0+1, . . .) until observing a pattern for a good candidate to

minimum power dominating set in a generic graph of the family. Let Sn be the

set obtained by such pattern for a general graph Gn of the family.

2. Show Sn is a power dominating set of Gn to conclude γP(Gn) ≤ |Sn|.
3. Use properties of the particular graph family to show |Sn| ≤ γP(Gn) and

obtain γP(Gn) = |Sn|.

• In all the results for graph families, the first part of the proof (step 2) is easy but
the second part (step 3) is usually long, technical and not elegant.

• The main reason for this kind of work was the lack of a lower bound on the power
domination number of a graph.

Daniela Ferrero Modern Math Workshop 2023



Electrical Power Networks
Combinatorial Optimization

Research Collaboration

Graphs & Matrices

Matrices of a graph

Let G = (V ,E) be a graph with V = {v1, . . . , vn}. The set of matrices of G is S(G),
defined as the set of all real n × n symmetric matrices A such that for every i ̸= j ,
Ai,j ̸= 0 if vi adjacent with vj and Ai,j = 0 otherwise (1 ≤ i , j ≤ n).

The adjacency matrix of G is the only matrix in S(G) in which all entries are 0 or 1.

Minimum rank of a graph

The minimum rank of a graph G is r(G) = min{rank(A) : A ∈ S(G).

Maximum nullity of a graph

The maximum nullity of a graph G is M(G) = max{null(A) : A ∈ S(G)}.

• The rank minimization problem asks r(G) for an arbitrary graph G and it is

an important problem in Linear Algebra and in applications.

• Minimizing r(G) is equivalent to maximizing M(G) (r(G) +M(G) = |G |).
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Zero forcing

AIM Minimum Rank Special Graphs Work Group
F. Barioli, W. Barrett, S. Butler, S. M. Cioabă, D. Cvetković, S. M. Fallat, C. Godsil,
W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I.Sciriha, W. So,
D. Stevanović, H. van der Holst, K. Vander Meulen, A. Wangness

Zero forcing set (AIM Minimum Rank Special Graphs Work Group, 2006)

Let G = (V ,E) be a graph. Given S ⊆ V , color each vertex in S blue and each vertex
in V \ S white. Iteratively apply the following rule: if a blue vertex u has exactly one
white neighbor v , then u forces v to turn blue. Once the rule iteration fails to force a
color change, if all vertices in V are blue, then S is a zero forcing set of G .

Example

v1 v2 v3 v4

v9 v8 v7

v5v10 v6

Blue vertices:

S = {v3, v4, v5, v9}
S ∪ {v2, v6}
S ∪ {v1, v2, v6, v8}
S ∪ {v1, v2, v6, v7, v8, v10}
S is a zero forcing set
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W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I.Sciriha, W. So,
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Zero forcing

Zero forcing set (AIM Minimum Rank Special Graphs Work Group, 2006)

Let G = (V ,E) be a graph. Given S ⊆ V , color each vertex in S blue and each vertex
in V \ S white. Iteratively apply the following rule: a white vertex turns blue if it is
the only white neighbor of a blue vertex. Once the iteration of the rule fails to yield
new blue vertices, if all vertices in V are blue, then S is a zero forcing set of G .

• If Bi [S] is the set of blue vertices after i iterations of the rule (i ∈ Z, i ≥ 0), then
1. B0[S] = S
2. Bi+1[S] = Bi [S] ∪ {u ∈ V \ Bi [S] : ∃v ∈ Bi [S],N(v) \ Bi [S] = {u}}

and S is a zero forcing set of G if and only if Bi [S] = V for some integer i ≥ 0.

Observation rules

Let G = (V ,E) be a graph and let S be an arbitrary set of vertices. For each positive
integer t, the set of vertices observed by S at time t is Pt [S] recursively defined by:
1. P1[S] = N[S] = S ∪ N(S)
2. Pt+1[S] = Pt [S] ∪ {u ∈ V \ Pt [S] : ∃v ∈ Pt [S],N(v) \ Pt [S] = {u}}

• In any graph G , for any S ⊆ V and any integer i ≥ 0: Bi [N[S]] = P i+1[S].

Thus, N[S] zero forcing set if and only if S is a power dominating set of G .
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Zero forcing

Zero forcing was independently defined in quantum physics (graph infection) and in

computer science (fast-mixed search).

Zero forcing set (AIM Minimum Rank Special Graphs Work Group, 2006)

Let G = (V ,E) be a graph. Given S ⊆ V , color each vertex in S blue and each vertex
in V \ S white. Iteratively apply the following rule: a white vertex turns blue if it is
the only white neighbor of a blue vertex. Once the iteration of the rule fails to yield
new blue vertices, if all vertices in V are blue, then S is a zero forcing set of G .

Minimum zero forcing set

A minimum zero forcing set is a zero forcing set of minimum cardinality.

Zero forcing number

A graph G with a minimum zero forcing set S has zero forcing number Z(G) = |S |.

Theorem (AIM Minimum Rank Special Graphs Work Group, 2006)

In any graph G , M(G) ≤ Z(G).
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Power Domination & Zero Forcing

Observation: If G is a graph and S is a minimum power dominating set of G , then

• N[S] is a zero forcing set of G , which implies Z(G) ≤ |N[S]|
• If G has maximum degree ∆, then |N[S]| ≤ (∆ + 1)|S | where |S | = γP(G)

Conclusion: Z(G) ≤ (∆ + 1)γP(G) or equivalently,
⌈
Z(G)
∆+1

⌉
≤ γP(G)

Improvement:

Given v ∈ S select a vertex v ′ ∈ N(s)

Then, N[S] \ {v ′} is a zero forcing set

Can we do the same for every v ∈ S?

v

v'

u

u'

Yes, because S is a minimum power

dominating set, so every vertex has

a private neighbor in N[S] \ S
v

v'
uu'

v

v'

u

u'
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Power Domination & Zero Forcing

Theorem (Benson, Ferrero, Flagg, Furst, Hogben, Vasilevska, Wissman, 2016)

If G is a graph with maximum degree ∆ then
⌈
Z(G)
∆

⌉
≤ γP(G).

Theorem (AIM Minimum Rank Special Graphs Work Group, 2006)

In any graph G , M(G) ≤ Z(G).

Corollary (Benson, Ferrero, Flagg, Furst, Hogben, Vasilevska, Wissman, 2016)

Let G be a graph with maximum degree ∆. If A ∈ S(G) then
⌈
null(A)

∆

⌉
≤ γP(G).

This corollary, shortened the proofs of many known results and yielded new results on
power domination and zero forcing for various graph products.
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Some of the consequences of the Corollary by Benson, Ferrero, Flagg, Furst, Hogben,

Vasilevska & Wissman with the support from REUF, AIM & ICERM.

Cartesian products

If n ≥ m ≥ 3 then γP(Cm□Cn) =

{ m
2
+ 1 if m ≡ 2 mod 4

⌈m
2
⌉ otherwise

γP(Pm□Pn) =

{
⌈m+1

4
⌉ if m ≡ 4 mod 8

⌈m
4
⌉ otherwise

.

γP(Cm□Pn) = min{⌈m+1
4

⌉, ⌈ n+1
2

⌉}

Tensor products

If n,m ≥ 3 then γP(Pm × Kn) =

{
2n − 1 if m = n and n is odd
2n otherwise

γP(Cm × Kn) =

{
2n − 1 if m = n and n is odd
2n otherwise

Lexicographic products

If n ≥ 2 and m ≥ 3 then Z(Kn ∗ Cm) = (n − 1)m + 2.
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Other Topics

Benson, Ferrero, Flagg, Furst, Hogben & Vasilevska continue collaborating through

2019 thanks to the support received from REUF, AIM & ICERM.

Nordhaus-Gaddum problems

For a graph parameter ζ, the following are Nordhaus-Gaddum problems:

• Determine a (tight) lower or upper bound on ζ(G) + ζ(G)

• Determine a (tight) lower or upper bound on ζ(G) · ζ(G)

Fault-tolerant power domination

Problem: Study power dominating sets that are resilient to

failures and/or to the injection of corrupted information

in the PMU system

We studied both problems for power domination and for zero forcing.
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Generalizations

Definition (Chang, Dorbec, Montassier, Raspaud, 2012)

For an integer k ≥ 1, a graph G = (V ,E) and a set S ⊆ V , define P1
G ,k [S] = N[S]

and P i+1
G ,k [S] = P i

G ,k [S] ∪ {u : ∃v ∈ P i
G ,k [S], v ∈ N(u), |N(v) \ P i

G ,k [S]| ≤ k},∀i ≥ 1.

If there exists t such that Pt
G ,k [S] = V then S is a k-power dominating set of G .

Definition (Amos, Caro, Davila, Pepper, 2015)

For an integer k ≥ 1, a graph G = (V ,E) and a set S ⊆ V , define F 1
G ,k [S] = S and

F i+1
G ,k [S] = F i

G ,k [S] ∪ {u : ∃v ∈ F i
G ,k [S], v ∈ N(u), |N(v) \ F i

G ,k [S]| ≤ k}, ∀i ≥ 1.

If there exists t such that F t
G ,k [S] = V then S is a k-forcing set of G .

Theorem (Ferrero, Hogben, Kenter & Young, 2016)

For an integer k ≥ 1, let γP,k (G) and Zk (G) denote the minimum cardinality of a
k-power dominating set and a k-forcing set of G . If G is a connected graph of
maximum degree ∆ ≥ k + 2, then Zk (G) ≤ γP,k (G)(∆ + 1− k).
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Other Topics

Ferrero, Hogben, Kenter & Young continued their collaboration to study:

Edge Contraction & Subdivision

• Role of vertices of degree 2 in zero forcing and in power domination.

• Extension to vertices of degree less than k in k-forcing and k-power domination.

• Defined a new type of subgraph contraction to improve the computation of power

dominating sets.
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Other Topics

Ferrero, Hogben, Kenter & Young continued their collaboration to study:

Edge Contraction & Subdivision

• Role of vertices of degree 2 in zero forcing and in power domination.

• Extension to vertices of degree less than k in k-forcing and k-power domination.
• Defined a new type of subgraph contraction with important algorithmic implications

for power domination.

Propagation time

• Defined propagation time for power domination i.e. ppt(G , S) and ppt(G).
• Proved that in every connected graph G of order n and maximum degree ∆,

ppt(G) ≥
⌈
n − γP(G)

∆γP(G)

⌉
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Restricted Power Domination

C. Bozeman, B. Brimkov, C. Erickson, D. Ferrero, M. Flagg & L. Hogben, during an

AIM Research Collaboration Workshop in 2017, started studying the following problem.

Question

What is the minimum number of additional PMUs needed to monitor an electrical

power network that has been expanded, if the existing PMUs remain in place?

Definition

Let G = (V ,E) be a graph and let X ⊆ V . A set S ⊆ V (G) is a power dominating
set of G subject to X if S is a power dominating set of G and X ⊆ S . The restricted
power domination number of G subject to X is the minimum number of vertices in a
power dominating set that contains X , and is denoted by γP(G ;X ).

Results

• Tight bounds on γP(G ;X )

• Exact results and algorithms to find γP(G ;X )

• Linear time algorithm to find γP(G ;X ) if G

is a graph with bounded treewidth.
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Linkages & Zero Forcing

During the same AIM Research Collaboration Workshop in 2017, D. Ferrero, M.

Flagg, T. Hall, L. Hogben, J. Lin, S. Meyer, S. Nasserasr & B. Shader started

collaborating on another problem.

Question

In a graph G with a zero forcing set S , as vertices force color changes in their

neighbors, some paths are being defined. How can these paths be described?

Results

• Proved that spanning forcing paths of a zero forcing process form a spanning rigid
linkage, which are a special type of vital linkages, a graph theory concept
introduced by Robertson & Seymour in the sequence of papers leading to the proof

of the Perfect Graph Theorem.

• Showed that a particular type of rigid linkages provide bounds on the multiplicities

of other eigenvalues of the family of matrices described by a graph.
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Product Throttling

S. Anderson, K.Collins, D. Ferrero, L. Hogben, C. Mayer, A. Trenk & S. Walker

started a collaboration during the Workshop for Research in Graph Theory and

Applications held at IMA in 2019.

Problem

Observation of large scale PMU systems and new technological developments shows:

• Minimizing the number of PMUs produces unsatisfactory results, mainly due to the

lack of redundancy to recover data lost in the event of failures.

• The addition of even a few additional PMUs produces so many advantages that

offsets the increase in cost.

• In graph searching there is always a compromise between number of searchers and

search time, and throttling means minimizing their sum or their product.

Results

• Extreme values of th×γP
(G)

• Determined γP(G) and th×γP
(G) for unit interval graphs

• Bounds and exact values for th×γP
(G□H)
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PMU system in North America

The large scale deployment of wide-area PMU started in 2008 and expanded
very quickly.

Daniela Ferrero Modern Math Workshop 2023



Electrical Power Networks
Combinatorial Optimization

Research Collaboration

Product Throttling

S. Anderson, K.Collins, D. Ferrero, L. Hogben, C. Mayer, A. Trenk & S. Walker

started a collaboration during the Workshop for Research in Graph Theory and

Applications held at IMA in 2019.

Problem

Observation of large scale PMU systems and new technological developments shows:

• Minimizing the number of PMUs produces unsatisfactory results, mainly due to the

lack of redundancy to recover data lost in the event of failures.

• The addition of even a few additional PMUs produces so many advantages that

offsets the increase in cost.

• In graph searching there is always a compromise between number of searchers and

search time, and throttling means minimizing their sum or their product.

Results

• Extreme values of th×γP
(G)

• Determined γP(G) and th×γP
(G) for unit interval graphs

• Bounds and exact values for th×γP
(G□H)

Daniela Ferrero Modern Math Workshop 2023



Electrical Power Networks
Combinatorial Optimization

Research Collaboration

Reconfiguration

Research by B.Bjorkman, C.Bozeman, D.Ferrero, M.Flagg, C.Grood, L.Hogben,

B.Jacobs & C.Reinhart, within the framework of the AIM Research Community on

Inverse Eigenvalue Problems for Graphs.

Reconfiguration

• The reconfiguration version of a problem asks if it is possible to transform a feasible
solution to the problem into another one, by iteratively applying certain operation

guaranteeing that each intermediate step is also a feasible solution.
• Vertices of a reconfiguration graph correspond to feasible solutions and edges join

two solutions that can be obtain from each other by applying the operation once.

• If the feasible solutions to P are sets, typical operations are token addition and

removal (TAR) and token exchange (TE).

Results

• Properties of the TAR and the TE reconfiguration graphs

for power dominating sets.
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The End

Conclusion
An application to a program at any of the Math Institutes does not require

much effort and there is a lot to gain if you receive their support.

Thank you!

dferrero@txstate.edu
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